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INTRODUCTION 

Dietary protein offers strong protection in some toxicoses of drugs, 

pesticides, minerals and natural toxicants (Hathcock, 1976). The protec

tive .effect of dietary protein is partially related to the sulfhydryl 

containing amino acids such as cysteine and methionine. Dietary protein 

deficiency may increase the toxicity of heavy metals (Hathcock, 1976). 

High cysteine content of intestine, xiver, and kidney metallothionein, 

a ligand which buffers heavy metal ion concentration (Cousins, 1979) 

suggests that deficiency of sulfur amino acids may increase heavy metal 

toxicity through limitation of metallothionein synthesis. 

Both cysteine and methionine are the precursors of glutathione, a 

non-protein thiol compound which is present in all types of cells. 

Besides its reducing capability as a protective mechanism against 

hyperoxides, and other functions in the cell, glutathione conjugates 

histotoxic metabolites of certain drugs and toxicants (Arias and Jakoby, 

1976). 

Humans are surrounded with a world of chemicals. Each year 500-

1000 new compounds are produced in commercial quantities (Damstra, 1978). 

Increases of population, industrialization and use of pesticides in food 

production results in human exposure to many different chemicals. Many 

industrial and agricultural chemicals may enter the environment as 

waste products, are discharged into the air, rivers, and lakes, and 

some eventually find their way into humans through contaminated food, 

water, and air. 

Because of its extreme toxicity, multiple sources and several 
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accidental poisonings, methylmercury has been carefully studied with 

regard to its effect on human health and quality of life (Clarkson, 

1976). There is a progressive increase in general background level of 

mercury in the industrialized societies. In addition to the emission 

of mercury through fossil fuel burning (Joensun, 1971), the extensive 

use of mercury in ccxmnercial and agricultural production- adds signifi

cant quantities of mercury to the human environment (Lutz, 1967). The 

potential health hazard of methylmercury to laboratory and industrial 

workers has been recognized for many years, and disastrous outbreaks of 

methylmercury poisoning have occurred in Japein and Iraq in recent decades 

(Rowland et al., 1977; Bakir et al., 1973). 

Atrazine is a herbicide which, due to its low toxicity, is widely 

used in agriculture. Its residues persist in the environment and in 

plants for a long period of time (Dalgaard-Mikkelsen and Poulsen, 1962). 

Methylmercury is detoxified in the body in conjugation with cysteine 

and glutathione. Atrazine is also detoxified by conjugation with 

glutathione and is excreted in urine as mercapturic acid. Since cysteine 

and methionine are the precursors of glutathione, their dietary content 

of protein would be important with regard to chronic exposure of humans to 

these toxicants. 

In general, methionine and cysteine are high in animal proteins but. 

plants are poor sources of these sulfur amino acids. Soybeans, which are 

considered an excellent source of protein, contain protein in which 

methionine is distinctly the first-limiting amino acid. With increasing 

use of soybean or other legume seed products as meat extenders or re-
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placers, the sulfur amino acid content of many diets may become more 

marginal. Therefore, studying the role of diets containing various 

levels of sulfur amino acids in the detoxification of methylmercury 

and atrazine can provide valuable information for establishing acceptable 

levels of these two toxicants and for setting dietary requirements of 

proteins (both quality and quantity). 

The purpose of this study is to investigate the effect of supple

mentation of diet with excess methionine on toxicity of methylmercury 

hydroxide and/or atrazine and also to study the synergistic effects of 

atrazine on methylmercury toxicity. Biochemical as well as behavioral 

changes due to different treatments were measured for these purposes. 
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REVIEW OF LITERATURE 

Toxicology of Methylmercury 

Methylmercury (MeHg) poisoning has occurred in two distinct 

situations. One has occurred as a result of industrial waste products 

with inorganic mercury being discharged into the sea or rivers. The 

inorganic mercury was then converted to organic mercury compounds by 

small aquatic organisms and accumulated in higher trophic levels such as 

fish and shellfish (Hamdy and Prabhu, 1979). The consumption of such 

contaminated fish and shellfish resulted in poisoning. This occurred 

in Minamata Bay in 1953 and in Niigata in 1965 in Japan (Rowland et al., 

1977; Kutsuma, 1968; Kurland et al., 1960). The syndrome of short-chain 

alkyMercurials poisoning is, therefore, called the Minamata disease. MeHg 

and ethylmercury are often grouped together as shortrchazLn alky Mercurials. 

Other large outbreaks have occurred as a result of accidental consumption 

of grain treated with MeHg as a fungicide. This occurred in a major 

episode in Iraq in 1971 (Bakir et al., 1973; Skerfving and Copplestone, 

1976). The organomercurial seed-dressing compounds protect the seed from 

a wide range of fungi and have a low toxicity to the seed. At least 6500 

people were affected with 459 recorded deaths in Iraq (Bakir et al., 1973). 

The syndrome of poisoning by short-chain alkyMercurials, 

Minamata disease, is characterized by paresthesia of the hand, foot, lips 

and tongue, by ataxia and by concentric constriction of visual fields 

(Skerfving and Vostal, 1972; Al-Damluji, 1976). 

MeHg is a potent neurotoxin; the clinical patterns of organic and 

inorganic mercury poisoning are very different. Organic mercury affects 



www.manaraa.com

5 

mainly the nervous system and produces neurological disease. Inorganic 

mercury affects gastrointestinal, renal and nervous systems, stomata and 

gingivi (Neal and Jones, 1938). 

A limited conversion of inorganic mercury to alkylmercury in the 

body is possible. Rowland et al. (1977) demonstrated that bacterial 

flora .of rat gut contents synthesized MeHg from mercuric chloride in 

vitro, and their estimation for the total amount of MeHg synthesized 

for ingested inorganic mercury in man was approximately 400 ng/day. 

Inversely, the biotransformation of alkylmercury to inorganic mercury 

in the body is also possible. Jacob et al. (1975) and Magos and Butler 

(1976) suggested that biotransformation of some forms of organic 

mercury to inorganic form is responsible for the toxicity of organic 

mercurials, and liver is the major site. Gallagher and Lee (1980), 

however, found that the biotransformation is not the only mechanism by 

which organic mercury exerts its toxicologic effects. 

The chemical properties of MeHg (CH^Hg"*") and mercuric mercury (Hg"*"*") 

are quite different. MeHg is monofunctional, so that it can react 

with only one ligand to give CH^Hg-ligand complex, whereas Hg"*"*" is 

bifunctional and it can react with two ligands to form ligand-Hg-ligand 

complex. Therefore, their behavioral differences in absorption, trans

portation, translocation and accumulation, and in general, toxic effects 

are related to these chemical properties. 

MeHg is known to have a great affinity for sulfhydryl groups (-SH) 

and it is causes a decrease in -SH groups in the brain and liver of 

the rat (Pekkanen and Sandholm, 1971). Hirayama (1975) demonstrated that 
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MeHg makes complexes with cysteine through the -SH group of cysteine; the 

amino acid portion of the structure remains intact and acts as an active 

carrier of MeHg across membranes, including the blood brain barrier 

(BBB). Therefore, MeHg can be easily absorbed, transported, and distrib

uted. On the contrary, Hg"*^ ion not only chelates the -SH group, but it 

also binds to other groups like -NH^ and -COOH of cysteine. Since Hg""^ 

can make a complex with two ligands simultaneously, it is not easily 

transported across the BBB, and this is why neurological effects of 

inorganic mercury compounds are not predominant. 

The BBB is considered to be a con^lex of multiple systems regulating 

the exchange of metabolic materials between brain and blood (Steinwall 

and Klatzo, 1966; Lajtha, 1962). Amino acids enter into the brain 

through the BBB. Oldendorf and Szabo (1976) stated that the BBB transport 

of amino acids has been attributed to three independent transport systems : 

neutral, basic and acidic systems, similar to that in the intestine. The 

active transport of cysteine in the BBB contributes to the uptake of 

MeHg-cysteine complex in the brain (Hirayama, 1980). Hirayama (1980) 

also studied the effect of amino acids other than cysteine on brain uptake 

of MeHg, and found that the brain uptake of MeHg was depressed by phenylal

anine and isoleucine which are neutral amino acids and not by lysine and 

glutamine which are basic and acidic amino acids, respectively. Depression 

of MeHg uptake of the brain by phenylalanine and isoleucine was attributed 

to the cross inhibitory effect of amino acids, which belong to the same 

carrier transport systeir. (Oldendorf and Szabo, 1876) . 
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Hirayama (1975) found that after subcutaneous administration of 

WeHg chloride to rats fed on a low cysteine diet, the brain showed sig

nificantly lower mercury levels than those of controls, but liver mercury 

levels were significantly higher than those of controls. Chang and Hart

mann (1972a,b) observed dysfunction of rat BBB in mercury toxicosis and 

believed it to be due to an impairment of the endothelial and glial 

membrane by mercury. The impairment of the BBB has also been reported in 

o'thsr heavy metal toxicoses such as lead poisoning (Pentschow and Carro, 

1966). Chang and Hartmann (1972a) also indicated that impairment of the 

BBB after mercury administration is responsible for the great reduction 

of the brain uptake of amino acids and other metabolites. Therefore, the 

neurotoxic effects of mercury on the central nervous system mainly depend 

on BBB function and the nature of the mercury compound. It is possible 

that at the early stages of mercury toxicosis, the presence or absence of 

sulfur amino acids might affect brain uptake of mercury and that later on, 

after BBB impairment, its uptake is not carrier dependent and might not 

be affected by the changes in the level of sulfur amino acids. The 

effect of MeHg upon nervous tissue is associated with the disturbance of 

protein synthesis ̂  vitro (Yoshino et al., 1966) and ̂  vivo (Cavanagh 

and Chen, 1971). Studies have shown the impairment of the incorporation 

of labeled amino acids into protein. Ultrastructurally MeHg appears 

to have a direct effect upon ribosomes in nerve cells (Herman et al., 

1973; Jacob et al., 1977). The loss of protein synthesizing capabil

ity of the nerve cell may lead to its death. 

Sulfhydryl groups are essential to the structural and functional 

integrity of cell membranes. Disturbance in the cell membrane function 
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may produce biochemical changes. Because the mercurials have a high 

affinity to the -SH group, and membranes contain -SH groups, membrane 

disturbance by mercurials is more likely. It was speculated that membrane 

permeability and enzymes which are located in the membrane were affected 

by mercurials (Clarkson, 1972). 

In a repeated exposure of rats to MeHg, Magos and Butler (1976) 

found that the accumulation of mercury in kidney and blood was distinctly 

higher than that of other organs. The proportion of inorganic to total 

mercury remained as low as 5% in whole body, whereas in the kidney 

with increasing doses a higher proportion of mercury was in the inorganic 

form. They also stated that weight loss, change in kidney function and 

enterohepatic circulation of MeHg might also have contributed to a 

redistribution of mercury. 

The injection of a single dose of MeHg hydroxide in mice and rats 

resulted in a high accumulation of mercury in the kidney, blood, and liver 

respectively (Ulfvarson, 1969a; 1969b). Mercury also binds to metallo

thionein in the liver and kidney. Methallothionein is a low molecular 

weight protein which is rich in -SH groups. It has been demonstrated 

that mercury causes an increase of metallothionein in the liver and kidney 

(Piotrowski et al., 1974; Winge et al., 1975). The binding of mercury 

to metallothionein has been shown to be influenced by the level of 

selenium (Se) in the kidney but not in the liver (Piotrowski et al., 1977) . 

Since protein synthesis is affected by MeHg and the deprivation of 

protein in rats was shown to cause an increase in -SH concentration in 

the cytoplasm of kidney cells, the levels of mercury and -SH were found 

to be parallel (Clarkson, 1972). Evidence indicates that virtually all 
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the mercury in the kidneys is in the form of methyl and ethyl mercuric 

salts, and intact MeHg radical may persist in animal tissues for many 

weeks after a single exposure (Norseth and Clarkson, 1970). 

Liver is a major site for detoxification of mercury compounds and 

most of the alkyl mercurials are eliminated via the bile and urine. The 

accumulation rate is rapid and besides binding to metallothionein and 

the membrane, conjugation with glutathione (GSH) and cysteine also 

occurs. Enterohepatic circulation of the MeHg has been identified 

(Norseth and Clarkson, 1971). 

The major portion of the circulating blood MeHg in the rat is in 

the erythrocytes, bound mainly to hemoglobin (Chen, et al., 1975), how

ever in man and the rabbit it is bound mainly to low molecular weight 

substances, more likely GSH rather than hemoglobin within erythrocytes 

(Naganumra and Imura, 1979) . One possible explanation for the distribu

tional differences of MeHg within the erythrocytes of different species 

is that hemoglobin of the rat contains four -SH groups per molecule where

as those of rabbit and man have two -SH groups per molecule (Snow, 1962) . 

Although brain accumulates mercury to a lesser degree compared to 

kidney, blood or liver, signs of poisoning appear when the concentration 

in the brain increases more than the concentration of the whole body 

(Magos and Butler, 1976). Estimation of mercury concentration in the 

blood has been used in man for the diagnosis of body burden and brain 

mercury concentration (Swedish Expert Group, 1971). Magos and Butler 

(1976) stated that blood concentration of MeHg might be used with certain 

limitations for the calculation of MeHg concentration in brain; half time 
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value, and final whole body concentration of mercury should be considered 

in such calculations. Butterworth et al. (1978) studied the regional 

distribution of MeHg in the brain following a single intravenous 

administration of CH^^'^^HgCl in rats. They found that it took four days 

203 
to reach peak accumulation of ' ng by the whole brain and delay in 

accumulation was regionally dependent. They found that the peak levels 

in cerebellum, medulla oblongata and mid-brain, for example, were 

attained sooner than those of hippocampus or cerebral cortex of frontal 

or occipital lobe. Therefore, the accumulation rates for different parts 

of brain are different. Chang ^d Hartmann (1972a) indicated that in rats 

treated with MeHg chloride, different parts of the nervous system 

accumulated mercury in the following order : dorsal root ganglion, 

calcarine cortex of occipital lobe and cerebellum (hichcct). 

Further biochemical analysis of nerve cells revealed that 

the subcellular distribution of mercury in general was mitochondrial 

fraction > microsomal fraction > supernatant fraction •> nuclear fraction. 

Thomas and Smith (1979) found that in brain MeHg formed a persistent 

complex with GSH and this complex accounted for about 30% of the total 

soluble MeHg burden. 

Vitamin E and MethyImercury Interaction 

Welsh (1974) was the first person to show that vitamin E has a 

protective effect against MeHg in fowl. Later, Welsh and Soares 

(1976), Welsh (1976, 1977), Sunde (1976), Chang et al. (1977) 

demonstrated that vitamin E, when given to quail and rats, reduced the 

toxic effects of MeHg in these animals and rendered better growth rates 
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and much longer life spans as conpared to those animals exposed to MeHg 

alone. Kasuya (1975) showed that vitamin E has a direct protective 

effect on the toxic effect of MeHg on nervous tissue cultures. Chang 

et al. (1978) demonstrated the histological evidence of the protective 

effect of vitamin E on nervous tissue of golden hamsters. The precise 

protective mechanism of vitamin E against the toxic effects of MeHg is not 

well established. The ability of this vitamin to prolong survival of 

animals given MeHg may be a significant finding in terms of understanding 

the mechanism of the neurotoxicity of MeHg. A new theory about the 

interactive mechanism of vitamin E and MeHg will be discussed later. 

Selenium and Methylmercury Interaction 

More than a decade ago it was reported that Se counteracts 

acute mercuric chloride toxicity in rats (Parizek and Ostadalova, 1967). 

Later, Ganther et al. (1972) showed that dietary Se delays the effect of 

chronic toxicity of MeHg in rats. since then, this effect has also 

been demonstrated with MeHg in other animals as well as rats (Stoewsand 

et al., 1974; Sell and Horani, 1975; Stillings et al., 1974). 

Se affects the organ distribution of MeHg. It causes increased 

uptake of MeHg in rat brain while exerting a protective effect 

(Prohaska and Ganther, 1977; Magos and Webb, 1977; Ohi et al., 1975; 1976). 

Se supplementation seems to increase mercury concentration in the 

liver, spleen (Potter and Materone, 1974) and brain and decrease its 

concentration in the kidney (Alexander and Norseth, 1979). Because of 

the above mentioned effects. Se is protective against MeHg toxicity. 
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Alexander and Norseth (1979) demonstrated that Se inhibits 

biliary excretion of mercury in rats, and increases enterohepatic 

circulation of MeHg. They also indicated that even a selenite to mercury 

ratio of 1:40 affects the biliary mercury excretion. The increase 

in enterohepatic circulation of mercury by Se was accompanied by a 

decrease in mercury concentration in the kidney. 

The effect of Se on mercury concentration in the brain is dose 

dependent and reaches a maximum at an equimolar selenite to MeHg 

dose ratio (Alexander and Norseth, 1979). 

The theory that Se directly binds to MeHg and alters its toxicity 

can not explain the relatively low level of Se required for the exertion 

of protective action against MeHg. Other mechanisms must be involved 

in mercury/Se interaction. It has been shown that MeHg excreted into 

the bile is mainly bound to GSH (Refsnik and Norseth, 1975). Alexander 

and Norseth (1979) stated that in liver MeHg exists predominantly as 

a MeHg-protein complex, and Se might in seme way alter the transfer of 

MeHg from the protein complex to the GSH or inhibit MeHg and GSH conju

gation . Therefore, the level of dietary Se plays an important role in 

the excretion of MeHg through the bile. 

Another possible interaction of Se and MeHg is through its effects 

on the activity of seleno enzyme glutathione peroxidase (GSH-Px). Se 

may preferentially bind to GSH-Px and protect against MeHg toxicosis 

(details to be discussed later). Diplock (1976) indicated that selenite 

was methylated through S-adenosylmethionine (SAM) and was excreted in 

urine as '''se- (CH^) ̂ and exhaled as '^Se-(CH3)2- Therefore, Se metabolism 
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produces two or three S-adenosyl-homocysteines; subsequently two or three 

homocysteines with free -SH groups separated from S-adenosylcysteine, 

which can bind MeHg. Magos and Sell also proposed (personal 

communication^) that the methyl group might bind to -SH group and 

form mercurymethionine which is transported to the brain and is 

incorporated into protein. This theory might explain the increase 

in mercury concentration of brain with Se supplementation. Also, it is 

reasonable to assume that the presence of Se prevents MeHg from binding 

to GSH and promotes mercury-methionine formation. 

Mechanism of Action 

It is often proposed that the toxic effect of mercury is due to its 

binding to sulfur ligands in proteins. This theory, however, has not 

been definitely proven. Passow et al. (1961) indicated that mercury 

ions probably caused damage to the membrane structure by forming cross 

linkage with the protein moiety of the cell membrane resulting in the 

formation of an abnormal structure which in tern causes the impairment 

of membrane functions as well as increase in permeability. Kasuya (1972) 

postulated that organic mercury compounds bind to the cellular membranes 

and result in a degeneration of the membrane structure. These presump

tions of mechansim of toxic action are based on the findings that some 

of the phospholipids such as sphingomyelin or phosphatidyl-L-serine 

show an inhibitory effect on the toxic effect of ethylmercuric chloride. 

a 
Dr. Jerry Sell, Department of Animal Science, Iowa State Uni

versity, Ames, Iowa. 
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Also a direct protective effect of vitamin E as a membrane stabi

lizer against the toxic effect of MeHg on nervous tissue cells has been 

shown (El-Bergrami et al., 1976; Kasuya, 1975; Welsh, 1974; Lucy, 1972; 

Brown and Pollock, 1972; Kurokama et al., 1970; Porta et al, 1968). 

Another mechanism that has been considered is that some of the 

toxic effects of mercury result from forming complexes with biologically 

active Se, such as in glutathione peroxidase (GSH-Px) (Hoekstra, 1975; 

Ganther, 1975). The evidence for this mechanism is derived from the find

ings of Forseth et al. (1974) and Welsh (1974) who showed that MeHg may 

induce signs of Se deficiency. Subacute doses of MeHg also caused a slight 

reduction in GSH-Px activity in rat brain (Prohaska and Ganther, 1977). 

There is a characteristic lag period of at least one week before 

the manifestation of poisoning with alkylmercury compounds (Clarkson, 

1972); this lag period is present regardless of whether a single 

dose or continuous doses are involved. No mechanism for this lag period 

has been established. 

Recently Ganther (1978) proposed a new theory of mechanism of action 

of MeHg toxicity. In this theory, the possible role of free radicals in 

MeHg toxicity was described. Basically, the theory proposed that the CNS 

damages exerted by MeHg may involve free methyl radical (:CH^) formation 

by the breakdown of MeHg and may not necessarily involve the intact 

molecule. This radical in turn will initiate the breakdown of MeHg. 

Presuming that free radicals are involved in the breakdown of the MeHg, 

and considering the MeHg physical properties, it might be taken up by 

the membrane in close proximity to lipids. It would then initiate 
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peroxidation of various lipid constituents as a result of its chemical 

tendency to undergo homolytic fission, perhaps initiated by radicals 

produced by oxygen dependent metabolic reactions. The onset of CNS 

damage would be preceded by a lag phase, during which the various systems 

defending against lipid peroxidation would be overcome, followed by a 

rapid and progressive degeneration of tissue (Ganther, 1978). 

The theory of Ganther (1978) also explains the protective mechanisms 

of Se and vitamin E, as well as other antioxidants, against MeHg toxicity. 

Se as a component of GSH-Px which decomposes hydrogen peroxide and hydro

peroxides would slow down the process of MeHg breakdown and methyl 

radical production. Vitamin E would modify MeHg metabolism by acting 

as a radical scavenger. It might be more efficient than other anti

oxidants because of its location in the membrane, and stablizing 

the membrane by interacting with unsaturated fatty acid chains. 

Although there is no conclusive evidence in support of this 

theory at the present time, it seems to be the most logical inter

pretation of the mechanism of MeHg toxicity, and the protective effects 

of vitamin E and Se. 

Toxicology of Atrazine 

One of the most commonly used herbicides and plant growth regulating 

compounds of the aminotriazine series is atrazine (2-chloro-4-ethylamino-

6-isopropylamino-l,3,5-triazine), (Figure 1), (Dalgaard-Mikke1sen and 

Poulsen, 1962). 

Simazine, propazine, Trietrazine, Ipazine, Simetone, Prometone and 
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Cl 

CH3^ / 

H 
\ 
S—C 

I I / 

CH2—CH3 

Figure 1. Atrazine (2-chloro-4-ethylaiiiino-6-isopropylamino-l,3,5 

Atratone are the common names of triazine compounds with slight dif

ferences on the side chains of the triazine structure-

Atrazine and other similar compounds are mostly water-soluble and 

persist in soil (Dalgaard-Mikkelsen and Poulsen, 1962); therefore, 

residues of atrazine in soil may enter human and animal food. Its 

use with resistant crops (Shimabukuro et al., 1971) may also result 

in the accumulation of a residue in crops used for human and animal 

consumption. 

Corn and sorghum metabolize atrazine to 2-hydroxyatrazine and 

conjugates with GSH and cysteine. The major detoxification of atrazine 

in corn and other plants is found to be through conjugation with GSH 

(Shimabukuro et al., 1970). The enzyme that catalyzes the reaction of 

atrazine with GSH in plants, GSH S-aryltransferase, has been partially 

triazine) 
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purified (Chasseaud, 1973). The activity of the enzyme in the plant 

determines its susceptibility to the herbicide atrazine (Shimabukuro 

et al., 1971). 

Atrazine is rapidly metabolized after oral ingestion by the rat. 

Bakke et al. (1972) found that in the rat 55.5% of the metabolites were 

excreted in urine and 20.3% in feces. They identified and characterized 

atrazine metabolites. Dealkylation was also found to be a major detoxi-

cation mechanism in rat, rabbit, goat, sheep, and chicken (Foster and Khan, 

1976) . Rat liver has been shown to have glutathione-S-transferase enzyme, 

with a pH optimum of about pH 8, which catalyzes the conjugation of GSH 

with atrazine (Crayford and Hutson, 1972). Hutson et al. (1970) speculated 

that glutathione-S-aryltransferase could be involved in the metabolism of 

2-chloro-triazines. The halogen group of the atrazine molecule was replaced 

by GSH and the conjugated product was excreted in the form of mercapturic 

acid. Crayford and Hutson (1972) indicated that the enzyme is located in 

hepatic cytosol. Johnson et al. (1972) indicated that this herbicide when 

applied to forage at the maximal recommended use rate, did not cause 

any adverse or toxicological effects in cattle or sheep. 

Although atrazine is vastly used in agriculture, the residue alone 

in the food and environment is far less than apparently needed to cause 

any serious problem. It is possible that its toxicity would be 

synergized by other toxicants which deplete GSH in the body. Therefore, 

it can be employed in experiments as a GSH depleting agent. 
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Dietary Methionine and Glutathione 

Methionine (Met) is an essential sulfur amino acid which is 

abundant in animal products such as meat, poultry, fish, milk, cheese 

and eggs (Mitchell et al., 1976). Met has several metabolic functions. 

As shown in Figure 2 (Mudd and Poole, 1975), the major functions of 

Met are its utilization in protein synthesis and conversion to SAM, 

cystathionine and cysteine. 

The amount of Met required may be somewhat reduced if cysteine, a 

sulfur-containing nonessential amino acid, is supplied in the diet in 

adequate amounts (Mitchell et al., 1976). Addition of up to 1% DL-

methionine in the diet was shown to improve growth rate and protein 

utilization of rats fed an 8% casein diet, but with the addition of 1.5-

3% growth was inhibited and protein utilization was impaired (Harper 

et al., 1970) . 

Met is one of the most toxic amino acids (Hathcock, 1976). Amounts 

exceeding 2% of the diet will cause severe growth depression. Harper 

et al. (1970) stated that the inhibitory effects of Met on growth depend 

on type of protein in the diet. The addition of 2% Met to a diet contain

ing 10% soy bean protein caused a 40% increase in growth, while the 

addition of 2% Met to diets containing 18-24% casein caused depression 

of growth rate to 50-80% of control value. 

The major regulatory point in the metabolism of Met is the 

distribution of available Met between protein synthesis and SAM 

formation. The second control point is practically irreversible con

version to homocysteine, from which cystathionine and cysteine form by a 



www.manaraa.com

19 

c 
Methionine Protein 

4HP^ 

5 Methyl 
4HP 

, N -Dimethyl 
glycine 

SAM 

r 

Glycine 

Betain 

Acceptor 

Methylated 
acceptor 

S-Adenosyl 
homocysteine 

Homocysteine 

^ Serine 

Cy stathi onin e 

a-Ketobutyrate 

T 
Cysteine 

Figure 2. Metabolic pathways of methionine 



www.manaraa.com

20 

0 H2C 

\H 

Figure 3. Glutathione (y-L-Glutamyl-L-Cysteinylglycine) 

Glutamate 

ATP ADP+Pi 

Cysteine 

Glutamylcysteine 

Glycine ATP 

^ADP+Pi 

Glutathione 

Figure 4. Biosynthesis of glutathione 

transsulfuration pathway (Finkelstein et al., 1980). The activity of 

several of the enzymes involved in Met metabolism may be modified by 

changes in the concentration of sulfur containing amino acids in body 

fluids and by the action of hormones (Harper et al., 1970). 

Met can be a precursor of GSH. GSH is an endogenous protective 

tripeptide (Figure 3) which is synthesized in cytosol by two ATP-de-

pendent steps and utilizes glutamate, cysteine and glycine (Figure 4). 

Cysteine is an immediate precursor of tissue GSH, whereas Met is a more 
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distal precursor of GSH and it operates through a transsulfuration 

pathway. 

Isolated hepatocytes have been shown to be capable of biosyn

thesis of GSH from exogenous methionine through the cystathionine path

way (Thor et al., 1979; Krebs et al., 1978). Campbell et al. (1978) and 

Poirier et al. (1977) showed that a methionine deficiency with other 

lipotrope deficiencies did not alter the hepatic level of GSH, while it 

caused a decrease in SAM in male rat liver. 

The capability of isolated kidney cells in catalyzing this pathway is 

less than that of hepatocytes, and the cysteine generated by the cysta

thionine pathway in kidney cells is not sufficient to support biosynthe

sis of GSH (Ormestead et al., 1980). 

GSH is the major nonprotein thiol compound found in all types of 

living cells. It occurs in a dynamic state, and there is an interorgan 

cycle of glutathione metabolism. Anderson and Meister (1980) indicated 

that glutathione is translocated to plasma in the form of GSH which 

constitutes the major source of plasma thiol. Griffith and Meister 

(1979) stated that substantial amounts of GSH are translocated from 

liver and probably from other tissues in the blood plasma. The thiol 

group (-SH) of GSH is the most chemically important active group in its 

biological and biochemical function. However, in the y-glutamyl cycle 

for amino acid transport across the plasma membrane the -SH group is 

not involved. 

GSH has a potent oxidation-reduction capability and it plays a 

protective role against hydroperoxides and prevents the formation of the 

hydroxy radicals ('OH) (Sunds and Hoekstra, 1980) by the formation of 
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glutathione disulfide (GSSG). The enzymes involved in the oxidation and 

reduction of GSH are glutathione peroxidase (GSH-Px) and glutathione 

reductase (GSH-Rd), respectively. 

GSH plays an important role as an intracellular reducing agent and 

protects the -SH groups of proteins from oxidation. It also regulates 

mitosis, cytoskeletal structure, intermediary metabolism of enzyme 

activity, and also regulates the synthesis of macromolecules (Suojanen et 

al., 1980). GSH serves as a coenzyme for several enzymes (Metzler,1977). 

Conjugation of compounds with GSH is either direct or following acti

vation by a cytochrome P-450 dependent oxidation. Conjugation may occur 

spontaneously or may be catalyzed by glutathione S-transferase (GSH S-

trans) (Moldeus et al., 1978). The conjugated compound then can undergo 

mercapturic acid biosynthesis as shown in Figure 5 (Chasseaud, 1976). 

Sulfur amino acids are also important in other detoxication 

mechanisms such as mixed-function oxidase (MFO) enzymes which metabolize 

a variety of substances. Edes et al. (1979) has shown that Met and 

cysteine deficiency causes a reduction of intestinal and hepatic MFO 

enzyme activity. Therefore, dietary sulfur amino acids, in addition to 

their important role in growth, protein synthesis and other biological 

functions, play an important role in the metabolic fate of numerous toxic 

compounds in human and animals. 

Functions of Glutathione Peroxidase and Reductase 

A "glutathione peroxidase system" consists of GSH-Px, GSH-Rd, and 

glucose-6-phosphate dehydrogenase (G6PD) which function as a metabolic 
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unit in the reduction of peroxides (Reddy and Tappel, 1974). GSH-Px 

utilizes GSH oxidation capability and appears to function in animals 

as a protective enzyme that guards against peroxidative damage. The 

enzyme was discovered by Mills (1957) . It was shown to protect the 

erythrocyte against hemoglobin oxidation and hemolysis (McCoy and 

Weswing, 1959). It has also been shown that there is a GSH-Px which 

is a selenoenzyme. Flohe et al. (1973), Nakamura et al. (1974), and 

Awasthi et al. (1975) demonstrated that GSH-Px contained 4 gram-atoms 

of Se bound to cysteine, and it is present as selenocysteine (Cone et 

al., 1976, 1977; Frostrom et al., 1978; Zakowski, 1978). Se is essen

tial for the enzymatic activity of GSH-Px, and it goes through an oxi

dation reduction cycle during catalysis (Flohe et al., 1973). 

Animals maintained on Se deficient diets show a rapid decline of 

tissue GSH-Px activity (Cantor et al., 1975). Selenite, selenometh

ionine, and selenocysteine generally have good biopotency for the syn

thesis of GSH-Px (Pierce and Tappel, 1977; Hawkes et al., 1979). How

ever, it has been reported that selenate does not have such biopotency, 

and it is not the form used for GSH-Px biosynthesis (Germaine and 

Arneson, 1977). Hydrogen peroxide as well as organic hydroperoxides 

are substrates for GSH-Px (Rotruck et al., 1973; Little and O'Brien, 

1868a, 1968b; Christophersen, 1968, 1969). Activated oxygen and free 

radicals, as products of normal cellular reactions or as products of 

the metabolism of toxic substances, may attack cellular components and 

cause hydroperoxide formation. GSH-Px together with superoxide dis-

mutase may prevent the hydroxy radical (-OH) formation by reducing the 
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concentration of superoxide and hydrogen peroxide so they cannot 

react with one another (Sunde and Hoekstra, 1980). 

It is known that vitamin E scavenges free radicals and possibly 

quenches activated oxygen. Since vitamin E is lipid soluble, it reacts 

on the membrane and is a lipid antioxidant (Tappel, 1962), whereas GSH-Px 

is located in the cytosol and mitochondria and guards cytoplasm against 

peroxidative damage. Sunde and Hoekstra (1980) stated that although 

lipid hydroperoxides are excellent substrates for GSH-Px, this soluble 

enzyme does not reduce lipid hydroperoxides to the corresponding alcohols 

in vitro. Instead GSH-Px prevents the peroxidation by destroying hydro

gen peroxide, and thus preventing the formation of hydroxy radicals. 

When autooxidized lipids were fed to rats which were receiving diets 

low in Se, hepatic GSH-Px activity was shown to be increased (Reddy and 

Tappel, 1974). 

The effects of vitamin E on the activity of GSH-Px of liver are 

controversial. Fukezawa and Tokumura (1976) have shown that hepatic 

GSH-Px activity decreased in mice with vitamin E deficiency, whereas 

Torstler et al. (1979) demonstrated that the activity of GSH-Px of 

liver increased in rats fed low vitamin E and Se diet. Recently, 

Lawrence and Burk (1976) reported an increase of GSH-S-transferase 

activities in the liver of Se deficient rats which had low levels of GSH-

Px. They also showed that there are at least two GSH-Px activities in 

rat liver. One is Se-dependent GSH-Px which utilized hydrogen peroxide 

as well as many organic hydroperoxides as substrates, and the other is a 
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Se-independent GSH-Px which has been shown to have the activity of sev

eral GSH-S-transferases. The Se-independent enzyme cannot use hydrogen 

peroxide as a substrate, but protects against lipid peroxidation in the 

NADPH-microsomal lipid peroxidation system (Burk et al., 1980). In some 

tissues, the peroxidase activity from the transferase is much higher 

than that of GSH-Px and it has been shown that guinea pig liver has no 

detectable Se-dependent GSH-Px activity (Prohaska, 1980). Therefore, 

the GSH-S-transferase also may be important in the protection of cells 

against peroxidation. 

It is also postulated that GSH-Px may have a specific function in 

the metabolism of prostaglandin hydroperoxide (Nugteren and Hazelhof, 

1973; Hazelhof and Nugteren, 1978), and of arachidonic acid in platelets 

(Bryant and Bailey, 1980; Ohki et al., 1979). 

Since there is an interaction between Se and mercury, it is possible 

that the enzyme activity of GSH-Px is affected by MeHg. Subacute doses 

of MeHg have been shown to cause a slight reduction in GSH-Px activity 

of rat brain (Prohaska and Ganther, 1977). Hirota et al. (1980), 

investigated the effect of MeHg on the activity of GSH-Px in 100,000 g 

supernatant of rat liver homogenate ̂  vitro. They found marked 

inhibition of enzyme activity with concentrations of MeHg between 

5 X 10 M and 5 x 10 M, but activity was hardly inhibited at 

-6 
concentrations less than 5 x 10 M MeHg. They also showed that 

inhibition was complete at concentrations greater than 5 x 10~^M MeHg. 

GSH-Rd is a flavoenzyme which catalyzes the pyridine nucleotide-

dependent reduction of GSSG to reduced glutathione (GSH) and maintains 
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a high ratio of GSH/GSSG in cells. It is also a radical scavenger, and 

may regenerate other antioxidants such as a-tocopherol and serves to 

activate enzymes through disulfide exchange (Pryor, 1976). The activity 

of this enzyme is quite high in liver; thus, liver has a high capability 

to cope with conditions which bring about rapid oxidation of GSH 

(Moron et al., 1979). Kum-Tatt et al. (1975) indicated from their 

findings that GSSG is catalyzed by one type of GSH-Rd enzyme which is 

nonspecific for NADH and NADPKfJ 

In the erythrocyte, GSH-Px, GSH-Rd and G6PD function as a single 

unit for peroxide reduction, and only the hexose mono-phosphate shunt 

produces NADPH for this unit but in the liver the G6PD serves an im

portant role in regeneration of NADPH for fatty acid synthesis and there 

is a linear relationship between GSH-Rd and G6PD in mice. Thus, the 

maintenance of GSH-Rd need not be linked solely to peroxide reduction 

(Torstler et al., 1979). 

Webb (1953) stated that inorganic mercury can inhibit GSH-Rd 

activity. Pekkanen and Sandholm (1972) found that rat liver GSH-Rd 

was not affected by MeHg, but brain GSH-Rd activity was decreased by MeHg 

administration. In addition, Mykkanen and Ganther (1974) found that 

blood GSH-Rd activity in rats and quail fed as high as 30 ppm MeHg were 

not affected- Furthermore they showed that there was a great difference 

between the effect of inorganic and organic mercury on the activity of 

rat erythrocyte GSH-Rd. A concentration of 1.6 ppm mercury as mercuric 

nitrate added to blood vitro, resulted in 30-40% of decrease in activity 

of GSH-Rd, whereas about 200 ppm mercury as MeHg was necessary for the 
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same inhibition- They speculated that differences between organic and 

inorganic mercury in the inhibition of GSH-Rd activity might be due to 

structural differences which result in a preference of GSH-Rd for 

binding mercuric mercury or in a preference of hemoglobin in the hemol-

sate for binding MeHg. 

It is known that GSH conjugates MeHg and atrazine as part of the 

detoxication mechanisms of liver. Since availability of GSH as a sub

strate for GSH-Px will be decreased by exposure to MeHg and atrazine, 

it is very likely that the activity of GSH-Px and interrelated enzymes 

like GSH-Rd, and glutathione-S-transferases also will be altered by 

exposure to these toxicants. 

Functions of Glutathione-S-transferases 

Conjugation with GSH is one of the biotransformation processes 

that generally results in less toxic products. The glutathione-S-

transf erases (GSH-S-trans) are a group of soluble enzymes that catalyze 

the conjugation of GSH with a wide range of electrophilic agents (Arias 

and Jakoby, 1976) . Several GSH-S-transferases have been identified 

in the rat liver cytoplasmic fraction. They are transferases AA, A, 

B, C, D, and E, and they have been shown to have very broad and 

overlapping substrate specificities (Habig et al., 1974; Keen et al., 

1976; Jakoby et al., 1976). Multiple forms of these enzymes were also 

found in liver of the monkey (Asaoka et al., 1977) and man as well 

(Kamisaka et al., 1975). 
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GSH-S-trans enzymes constitute about 10% of the total extractable 

soluble protein from rat liver (Jakoby, 1978). GSH-S-trans B has also 

been identified as the cytoplasmic electrophile binding protein ligand 

in liver (Habig et al., 1974). 

There is evidence that these enzymes are present in the kidney 

(Kaplomitz et al., 1976), small intestine (Pinkus et al:, 1977), lung 

(Guthenberg and Mannervik, 1979), and steroidogenic organs (Bend et al., 

1977). Several studies, usually on the rodents, have shown that,'GSH-S-trans 

activities towards a range of electrophiles are generally highest in 

liver and steroidogenic organs such as adrenals, ovary and testis (Kraus 

and Kolft, 1980; Chasseaud, 1979; Datta et al., 1973). Kraus and 

Kolft. (1980) found that activities of these enzymes in the heart, 

brain, spleen and lung were relatively low or nil for most substrates. 

Although the presence of these enzymes was determined in the other 

organs, the present data do not permit one to evaluate the role of 

different tissues in catalyzing the conjugation of GSH with electro-

philic xenobiotics. Kraus and Kolft (1980) also speculated that the 

presence of GSH-S-trans in the other organs might protect nucleophilic 

components of tissue from denaturation by electrophilic reactants, or 

they might be needed for transport of protein. Transferase activities 

in the soluble fraction of liver of mice were shown to have significant 

differences between the male and female (Hayakawa et al., 1974). It was 

shown that male mice had twice as much activity as female mice with 

naphthalene-1,2-oxide as the substrate; however, when styrene oxide was 

used as the substrate, no significant differences between the sexes 
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were observed. 

The enzyme activities also appear to be age dependent (Mukhtar et 

al., 1979). Hayakawa (1977) stated that livers from 17 to 18 day rat 

embryos showed almost no activity; however, the activity appeared and 

sharply increased at about three weeks of age and reached a maximum 

at about six weeks of age. 

GSH-S-trans has other detoxification functions in addition to GSH 

conjugation. One is the binding of a large number of xenobiotics as 

well as a bilirubin, until they are converted to less toxic compounds 

(Wolkoff et al., 1978). GSH-S-trans also has been claimed to have 

activity as a scavenger protein (Smith et al., 1977). In addition, the 

intermediate reactive products of drugs biotransformation which are 

thought to play an important role in carcinogenesis, mainly bind 

covalently to a ligand which is identical to GSH-S-trans B. 

The hepatic cytoplasmic treatments such as phénobarbital, DDT, 

methylcholanthrene, trans-stilbene oxide and rifampcin, as well as fast

ing and some other metabolic disturbances, induce these enzymes (Younes 

et al., 1980; Friedberg et al., 1979; Down and Chasseaud, 1979). 

Inducibility of GSH-S-transferases in hepatocytes of two species of non-

human primates is lower than in the rodents (Down and Chasseaud, 1979). 

Microsomal GSH-S-trans activity in rat liver was also reported by 

Booth et al. (1961). Such activity was reported also in the microsomes 

and mitochondria of rat liver (Kraus and Gross, 1979) and in mouse liver 

(Glatt and Oesch, 1977). 

The catalytic characteristics of microsomal GSH-S-transferases are 
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quite different from cytoplasmic ones. The enzyme cannot be removed from 

the membrane, but the enzyme is at least partially exposed on the cyto

plasmic surface of endoplasmic reticulum (Morgenstern et al., 1980). 

Three microsomal GSH-S-transferases were identified in the rat liver by 

Friedberg et al. (1979), and they found that the pattern of GSH-S-

transferases in the microsomal fraction is similar to that in the 

cytoplasm. However, the specific activity of cytoplasmic enzymes was 

shown to be increased by inducer agents, but microsomal enzyme activity 

was not affected (Friedberg et al., 1979; Morgenstern et al., 1979). 

Morgenstern et al. (1979) proposed that the -SH group is involved in 

the activation of microsomal GSK-S-transferase activity and presented 

evidence that activation results from attack on the microsomal 

sulfhydryl group(s). Membrane bound GSH-S-transferase may be advanta

geous in the inactivation of reactive metabolites formed within the 

microsomal membrane, which are lipophilic and therefore remain within the 

membrane rather than diffuse into the cytoplasm (Friedberg et al., 1979). 

Prostaglandins 

The prostaglandins (PGs) are derivatives of essential fatty acids. 

Each compound has a five membered ring structure and two side chains. 

They seem to be synthesized by all mammalian cells with the possible 

exception the mature red blood cells. The PGs are realized to be involved 

in the fundamental responses of cells and organs (Horrobin, 1978). In 

PG synthesis, endoperoxide formation is the critical point. Regulation 

of PG synthesis may depend on regulation of essential fatty acid 
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metabolism (Van Drop, 1971; Ramwell et al., 1977), regulation of lipase 

activity (Sameulsson, 1969; Ramwell et al., 1977; Flower, 1977), 

cofactors, and steroid hormones (Horrobin, 1978). 

Some compounds may inhibit or stimulate biosynthesis of PCs. 

From the view point of my interest, it was documented that GSH enhances 

PGEg production at the e:gense of the other PCs. Horrobin (1978) 

stated that omission of GSH tends to increase production of other 

PGs, including PGF- The omission of GSH did not alter oxygen consumption 

although PGE^ formation was reduced. Ho et al- (1976) found that there 

was no effect of GSH on thromboxane (TXB^) production while Tai and 

Yuan (1977) reported some stimulation of TXB^ synthesis. 

Since oxidation and reduction play a critical role in the formation 

of PGs, agents which modify redox states may modify PG synthesis (Nugteren 

and Hazelhof, 1973). Antioxidants such as a-tocopherol inhibited PG 

synthesis (Nugteren, 1970; Lands and Rome, 1976) ; however, at low 

concentrations, synthesis might be enhanced, especially the PGEs. 

Morse et al. (1977) reported a stimulatory effect of hydrogen 

peroxide on PG synthesis in various tissues. They stated that H^Og or 

some product derived frcm this molecule might act in concert with or on 

the prostaglandin endoperoxide forming cyclooxygenase or on some 

substrate formed as a consequence of activity of this enzyme. They 

suggested that and organic peroxides derived from it serve as 

donors of some electronically activated species of oxygen (such as 

hydroperoxy free radical HOO., or the peroxy radical .00.) that is 

uniquely reactive and suitable as substrate for the cyclooxygenase-
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catalyzed addition of oxygen. 

Horrobin et al. (1978) suggested a decrease in PGE^ synthesis due 

to excess methionine. They stated that Met gives rise to taurine which 

decreases PGE^ synthesis via inhibition of the prolactin effect on PGE^ 

production in brain tissue. Both PGE^ and were shown to be 

involved in anxiety and depression (Horrobïn, 1978). 

Although there are no reports indicating the effects of MeHg and 

atrazine on PG synthesis, consequent to these points it is more 

likely that PG synthesis could be altered indirectly by these 

toxicants possibly through an effect on the GSH and/or GSH—Px systems. 

Significance of Behavioral Studies in 

Toxicant and Nutrient Interactions 

Although the deleterious effects of many substances have been 

known for many years, their effects on behavior have not been well 

documented. Chronic low dose exposure of man and animal to toxicants 

might produce no observable pathological or biochemical changes, 

whereas behavioral impairment might be present. Behavioral measures 

might provide more sensitive indices of the consequences of exposure 

to the environmental toxicants than clinical measures. 

The nervous system serves to maintain homeostasis under certain 

input/output conditions. When output is generated which involves the 

motor system a measurable behavior occurs (Reiter, 1978). Behavioral 

impairment might not necessarily result from the effect on the 

particular function or structure of nervous system. Reiter (1978) 

stated that a chemical might act to disrupt the input/output relation
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ships either by directly affecting some levels of neuronal organization 

or by interacting with other organ systems, thus affecting nervous 

system function indirectly. 

The nervous system is not often identified as the primary site of 

damage by MeHg compounds. Behavioral and neurological symptoms are 

virtually the only ones detectable in very low chronic exposure. Few 

overt neurological signs appear before advanced stages of toxicity are 

manifested (Hughes et al., 1975). A wide variety of behavioral tests 

such as open field behavior, active avoidance, learning ability, 

operant reinforcement, and discrimination behavior have been employed 

with animals to assess MeHg effects on motor and sensory systems. 

Suzuki and Miama (1971) demonstrated in mice that when mercury 

was accumulated slowly, symptoms were more associated with lower brain 

concentrations than when accumulation was rapid. Lown et al. (1977) 

indicated that the route of administration of 10 mg mercury as MeHg 

per kg of body weight is important in behavioral impairment in rat. They 

found that ambulation and rearing of rats were depressed in open field 

behavior tests when MeHg was administrated intraperitoneally whereas 

other routes of administration of MeHg did not affect the open field 

behavior of rats. They also found that behavioral alterations were not 

directly related to brain mercury level following acute administration 

of MeHg by different routes, but liver and kidney mercury levels were 

significant predictors of behavior. Reduced locomotion and re siring 

in the open field in rats exposed to high doses of MeHg were observed 

by Post et al. (1973). They found that rats required significantly 
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more trials to leam a T-maze after oral administration of MeHg in a 

single dose of 20 mg mercury per kg body weight. 

Zenick- (1974) showed that the ability of rats to swim through 

a water maze was impaired following an indeterminate dose of MeHg 

given at early stages of development. Hughes et al. (1975) demonstrated 

that in rats exposed to small amounts of MeHg at age 28-42 days, the 

ability to learn an active avoidance response as adults was 

impaired. Evans et al. (1975) used visual form and brightness discrimi

nation to study chronic MeHg intoxication in monkeys and found significant 

alterations. 

Since MeHg accumulates in brain, it may cause an alteration in 

the neurotransmitter synthesis. Acetylcholine (Ach) is one of the 

several transmitters which is synthesized in the neurons. Kobayashi 

et al. (1980) postulated that MeHg poisoning might reduce Ach concen

tration and turnover rate in brain of mice. PGEg and 11-thiol-ll-deoxy 

PGEg were shown to possess an anticholinergic effect (Bloss and Singer, 

1978). Since PGs effects on brain function might be dependent on 

modulation of transmitters actions (Horrobin, 1978), it is possible 

that changes in PG synthesis by MeHg through alteration in the GSH-Px 

system cause a change in neurotransmitter concentration or turnover 

rate which in turn alters the behavior of the animal. Possibly excess 

Met exerts its neurological effect through alteration in PG synthesis 

(Horrobin et al., 1978). 

As shown by the studies cited above it is clear that behavioral 

alteration in animals by toxicant and nutrient interaction should be 
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considered closely and the mechanism of action and biochemical pathways 

which are involved in certain behavioral responses should be in

vestigated. 

Summary and Conclusions 

Exposure to methylmercury and atrazine has deleterious effects on 

the physiological homeostasis of the human and animal body. Methyl-

mercury and atrazine are both introduced into the environment and food 

chain through industrial and agricultural activities (Rowland et al-, 

1977; Shimabukuro et al., 1971). Accidental consumption of agricultural 

commodities containing some amount of these toxicants has resulted in 

some tragic human.episodes (Bakir et al., 1973; Skerfving and Copple-

stone, 1976). 

The neurotoxicity of methylmercury is well-documented (Thomas and 

Smith, 1979; Chang and Hartmann, 1972a, 1972b; Skerfving and Vostal, 

1972). The detoxification mechanism for methylmercury and atrazine have 

been studied by Norseth and Clarkson (1970, 1971), and by Crayford and 

Hutson (1972), respectively. Both toxicants are shown to be conjugated 

with GSH and excreted partially as mercapturic acids in urine. The con

jugation is catalyzed by GSH-S-trans, of which several have been iden

tified (Habig et al-, 1974; Keen et al-, 1976; Jakoby et al., 1976)-

GSH is the major nonprotein thiol compound in all types of living 

cells- It also plays a protective role against hydroproxides and hydroxy 

radicals (Sunde and Hoekstra, 1980). Since both toxicants are conjugated 

with GSH, they might have the capability of depleting GSH of human and 
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animal bodies exposed to these toxicants for long periods of time. 

Therefore, GSH biosynthesis and GSH-Px, and GSH-Rd activities possibly 

will be altered in this condition. 

There are significant numbers of studies on the role of Se and 

vitamin E in relation to mercury toxicity (Welsh, 1976, 1977; Kasuya, 

1975; Ganther, 1978; Alexander and Norseth, 1979). Since there is an 

interaction between se and mercury, the activity of selenoenzyme GSH-Px 

may be altered through such interactions. 

Synthesis of PCs might also be affected by both toxicants indirectly, 

probably through changes in GSH level or GSH-Px activity in the tissues 

(Horrobin, 1978; Tai and Yuan, 1977). Increase of endogenous hydrogen 

peroxide may also elevate PG synthesis (Morse et al., 1977). The role 

of antioxidant a-tocopherol and methionine on PG synthesis has also 

been studied (Nugteren, 1970; Lands and Rome, 1976; Horrobin et al., 

1978). 

The behavior of animals has been shown to be changed when exposed to 

toxicants. Several investigators have studied the behavioral effects 

of acute and chronic exposure to methylmercury (Suzuki and Miama, 

1971; Lown et al., 1977; Post et al., 1973; Zenick, 1974; Hughes et al., 

1975). Ths behavioral effects of atrazine alone or in combination with 

methylmercury in man and animals, however, have not been studied. 

An hypothesis can be made based on the present information indicating 

that synergistic GSH depletion is possible by one exposure to methyl

mercury and atrazine. Since methionine is convertible to cysteine, 

which in turn is a substrate for GSH synthesis, an experiment with 

administration of low, normal, and excess dietary methionine to 
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cinimals receiving methylmercury and atrazine subacutely, will provide 

valuable information on the alleviation of methylmercury and atrazine 

toxic effects. If so, such a diet modification would be appropriate 

for the human population which is more likely to be exposed to both 

toxicants or similar toxicants with similar biochemical actions. 



www.manaraa.com

38 

MATERIALS AND METHODS 

Animals and Treatments 

Randomly bred weanling male Wistar rats from the stock colony of 

the Department of Food and Nutrition at Iowa State University were used. 

The study was conducted in two replicates with 72 rats per replicate for 

a total of 144 rats. Each replicate included 18 treatments with four rats 

per treatment for a total of eight rats per treatment in the complete study. 

Rats were randomly assigned to each treatment and were housed 

individually in hanging type stainless steel wire mesh rat cages (40 x 

24 X 20 cm). Animals were maintained at 22° with 12 hours of light and 

12 hours of darkness per day. Diets and distilled water were provided 

ad libitum and changed twice weekly unless otherwise specified. Rats 

were treated in the two following phases with diets and toxicants : 

Pre-exposure Phase (26-32 days) In this phase, rats were 

adjusted to the new environment and received basal diet with adequate 

methionine for 20-26 days after which they were fed the experimental 

diets (without atrazine) until the beginning of the next phase. On the 

fifth day of this phase, water was removed for 12-14 hours during the 

dark period of the day. Water deprivation was used to motivate rats 

to respond to the light stimuli in testing chambers. Animal health and 

weight gains were recorded every three days. 

Exposure phage In this phase, methylmercury hydroxide and/or 

atrazine were fed to the appropriate groups of rats (see page 45). Water 

was removed for 12-14 hours during the dark period of the day. Urine was 

collected one and three weeks after starting toxicant treatment and also 
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a day prior to sacrificing the rats at the end of each phase. Rats were 

closely observed for their general health appearances and neurological 

effects of methylmercury hydroxide toxicity. Onset of hind limb paral

ysis and gait alteration was recorded for rats receiving methylmercury 

hydroxide at higher dose levels. Weight was measured every other day 

and two choice form discrimination tests were conducted every day of this 

phase. 

Diets 

The composition of the basal diet is shown in Table 1. Isolated 

soy protein was used because it is deficient in the sulfur amino acids. L-

methionine was used to adjust the sulfur amino acid content of diets. The 

methionine adequate and methionine excess diets contained 0.24% and 0.48% 

L-methionine, respectively. The basal diet and the diets with two 

levels of added methionine contained methionine and cysteine concentra

tions shown in Table 2. The 1:1 methionine to cysteine ratio was just at 

the limit of the useful cysteine replacement for methionine (National 

Research Council, National Academy of Sciences, 1978). 

Selenium and vitamin E were added to the diet at a concentration of 

0.1 mg and 30IU per kg of diet respectively. These levels of selenium and 

vitamin E were chosen to provide adequate nutrition under normal conditions; 

each level added was equal to 100% of the rat's requirements for selenium 

and vitamin E (National Research Council, National Academy of Sciences, 

1978). 
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Table 1. Composition of basal diet^ 

Ingredient % weight 

Isolated soy protein^ 15.2 

Corn starch^ 30.5 
d 

Sucrose 31.0 

Cellulose® 8.8 

Lard^ 5.0 

Corn oil^ 3.5 

Salt mix^ 5.0 

Vitamin mix^ 1.0 

Total 100.0 

^The basal diet contains 60% of NRC rat requirement for methionine/ 
cystine. 

^Supro 660, Ralston Purina Company, St. Louis, MO. 

^Teklad, Madison, WI. 

^lowa State University, Food Service. 

®Teklad, Madison, WI. 

^Mazola brand from Iowa State University Food Service. 

^William and Briggs salt mixture (modified), Tekled, Madison, WI, 
with Na^SeO^ added to provide 0.1 mg Se/kg diet. 

^Amount in 100 kg diet: vitamin A acetate, 800,000 lU; vitamin D 
cholecalciferol, 200,000 lU; vitamin K menadion, 10 mg; vitamin 
B , 25 mg; biotin, 10 mg; folic acid, 500 mg; thiamin HCl, 1 g; 
paraamino benzoic acid, 40 g; Ca-pantothenate, 2 g; niacin, 5 g; 
pyridoxin, 5 g; riboflavin, 1 g; cholin citrate, 120 g; inositol, 
40 g; corn starch to 1 kg; vitamin E DL-a-tocopherol 30 lU/kg diet 
was added to the fat prior to mixing with the other ingredients. 
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Toxicants 

Atrazine was mixed uniformly with the appropriate diets at a 

concentration of 500 mg/kg as powdered technical grade atrazine (97.2%). 

Atrazine was provided by the Ciba-Geigy Corporation, Greensboro, NC. 

Methylmercury hydroxide (Alfa Division, Ventron Corporation, Danvers, MA) 

was administered at two different doses (0.5 and 1.5 mg/kg body weight/day) 

to the appropriate groups of rats by gavage. The dose required for two 

days for each rat was combined and administered every other day. 

Treatments 

The eighteen treatments shown in Table 3, were achieved by adding 

atrazine to the appropriate diets (diets A, B, C, Table 2) with 

thorough mixing and oral administration of methylmercury hydroxide. 

Behavioral Tests 

Four behavioral test chambers were used to shape and train rats 

to respond to light stimuli. The test chamber (Figure 5) is constructed 

of Plexiglas^ and equipped with a barred floor, side door, variable 

intensity light, and an intelligence panel. Mounted on the intelligence 

panel are two IEEE in line stimulus projectors. A water reinforcement 

fount and response bar are located directly below each projector. 

Each plexiglas chamber was mounted in a sound proof wooden 

enclosure with plexiglas window. A closed circuit television camera was 

mounted outside of the chamber in front of the chamber window. The presen

tation of the light stimuli and reinforcement was computer controlled: 
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Computer Instrumentation and Program The computer used for 

experimental control and data acquisition was a Digital Equipment Corpora

tion (DEC) PDP-8/A with a dual floppy disk drive, buffered digital input/ 

output interface. Output signals from the plugboard in each chamber were 

connected to the computer interface- Each chamber used two input channels, 

one for each response bar, a total of eight input channels were used for 

operating channels. A standard teletype was used to provide experimenter 

interaction with the computer. 

A computer program written in the Program Assembly Language (Hopper, 

1976) with a minor modification was used to control shaping and testing. 

Shaping of Rats in the Pre-exposure Phase Shaping was carried out 

by reinforcing bar press responses during the light stimulus. A correct bar 

press response was reinforced by 0.1 ml of sweetened water (0.08 ml of 0.04 

g sugar per ml of water), either by an observer or under computer control. 

An incorrect response was not reinforced and terminated the trial. 

Each rat was trained once daily for a total of 20-26 training 

sessions during response shaping period. Each session lasted approximately 

eight minutes and consisted of 42 trials which began with an intertriai 

interval (ITI) , during which both stimulus lights remained darkened. 

Following the ITI one of the lights was lighted and remained on until a 

correct or incorrect response was made, or until it was automatically 

terminated by the computer program after elapse of 10 seconds, whereupon 

the trial was defaulted and the next trial was started. 

At the end of each training session, a quick reference data 

summary was printed under computer control. It included a list of delays 

employed during the training session, the number of correct and 
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Figure 6. Behavioral test chamber 

^Sweetened water reservoir. 

^Light stimulus display. 

^Response keys. 

^Reinforcement cups. 

^Variable intensity house light. 
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Table 2. Sulfur amino acid concentration of experimental diets 

Diet % sulfur amino acid concentration % of 

methionine cystine total requirement 

A (basal + 0.24% L-met) 0.42 0.18 0.60 100 

B (basal) 0.18 0.18 0.38 60 

C (basal + 0.48% L-met) 0.66 0.18 0.84 140 

Table 3. Composition of treatments 

Treatment Diet Atrazine mg/kg diet Hg mg/kg body wt. 

1 A  0 0 

2 B 0 0 

3 C 0 0 

4 A 0 0.5 

5 B 0 0.5 

6 C 0 0.5 

7 A 0 1.5 

8 B 0 1.5 

9 C 0 1.5 

10 A 500 0 

11 B 500 0 

12 C 500 0 

13 A 500 0.5 

14 B 500 0.5 

15 C 500 0.5 

16 A 500 1.5 

17 B 500 1.5 

18 C 500 1.5 
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incorrect responses, the number of defaults to the left and right stimulus 

lights, the number of spontaneous responses during stimulus presentation, 

and the intertriai interval. 

Two-choice Form Discrimination Test in Exposure Phase Tests 

were started a day after exposure to toxicants. The behavioral chambers 

were used and random light stimuli in triangle and square patterns with 

equal light intensity were presented in this test. 

The pattern which was rewarded by sweetened water was the triangle 

which appeared randomly on either the right or the left side of the intelli

gence panel simultaneously with the square pattern on the other side of the 

panel. Correct responses were recorded by pressing of the pedal under 

the triangle illuminated pattern. Incorrect response were recorded by 

pressing of the pedal under the square illuminated pattern. 

The two-choice form discrimination test was conducted once a 

day for each rat, with a total of 25-29 sessions in the exposure phase 

of the experiment. Each session consisted of 42 trials. The course 

of each session was similar to that described for shaping sessions with 

one exception, two lights were presented in the form of a triangle and 

a square. Following each session a short data summary similar to the 

one described for the shaping session was printed and a longer trial-by-

trial data summary was recorded in one disk and later transferred to^tape. 

Urine Collection 

During the exposure phase of the experiment, urine of rats was 

collected three times, as mentioned on page 38. Urine was collected on 



www.manaraa.com

48 

wrinkled heavy duty aluminum foil for 8-10 hours in the dark period 

(Black and Claxton, 1979). Hanging type stainless steel wire mesh rat 

cages (20 x 24 x 20 cm) were used for this purpose and only distilled 

water was available to :the rats during this period. Collected urine was 

frozen at -20° until it was analyzed for mercapturic acid and mercury 

content. 

Necropsy and Sample Collection 

All rats were anesthetized with ether and the abdominal cavities were 

exposed by longitudinal incision on the midline of the abdomen. The 

following samples were collected: 

Blood was collected from vena cava. A four ml sample was 

collected in a 10 ml disposable polyethylene syringe containing two drops 

of heparin (Sigma Company, St. Louis, MO) (1000 U/ml deionized water of 

Na heparin) for enzyme and mercury analysis. The blood was then delivered 

to polyethylene tubes containing acid-citrate-dextrose (ACD). Another 

2 ml of blood was collected in a 10 ml polyethylene disposable syringe 

and incubated for 10 min. at 37° in a shaking waterbath. After exactly 

10 min., 0.1 ml sodium salicylate solution (4.2 mM sodium salicylate 

in 0.1 M potassium phosphate buffer pH 7.4) per ml of whole blood was 

added. Serum was obtained by centrifugation at 4° and immediately frozen 

and kept at -20° for prostaglandin analysis. 

Livers were perfused with cold 0.9% saline in situ to remove 

blood. The liver was excised, weighed, divided into four pieces, which 

were wrapped separately in aluminum foil. The samples were immediately 

frozen in liquid nitrogen and stored at -80° for GSH-Px, GSH-Rd, GSH-S 
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trans, and total glutathione analysis and at -20° for mercury analysis. 

Kidneys were removed, weighed, frozen in liquid nitrogen and 

stored at -20°. The cortex and medulla of the kidneys were used for 

mercury analysis. 

Whole brains were removed, frozen in liquid nitrogen and stored 

at -20°. The right occipital lobe was used for mercury analysis. 

Analytical Methods 

Tissue Composition and Enzymes 

Glutathione peroxidase specific acitvity Whole blood ACD 

was used to measure GSH-Px by the method of Paglia and Valentine (1967). 

Changes in absorbance (A) per min. on the linear portion of the curve was 

measured and units of GSH-Px per ml of whole blood were calculated as 

_ , (A sample - A blank) x 0.48231 dilution 
GSG-Px, unit/ml blood = ^ ml of sample ^ factor 

GSH-Px of liver was measured by the modified method of Pierce and Tappel 

(1978) and assisted by a personal communication from Dr. Shirley C. Chen, 

Department of Food and Nutrition, Iowa State University, Ames, lA. Instead 

of using hydrogen peroxide, T-butyl hydroperoxide (0.05 ml of 1.5 mg/ml 

per assay) was used as a substrate. 

Glutathione Reductase specific activity Activity of this 

enzyme in liver was measured using the method presented in Methods of 

Enzymatic Analysis (Bergmeyer and Gawehn, 1974). 

Glutathione-S-transferase specific activity This enzyme was 

measured by the method of Booth et al. (1961) and by adapting Ae for 

l,2-dichlor-4-nitrobenzene from Habig et al. (1974) for the calculation of 
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enzyme activity. 

Total protein In order to calculate the specific activities 

of enzymes, the total protein of supernatants prepared from liver samples 

was assayed using Biuret reagent (White et al., 1976). The specific 

activity of enzymes was calculated using the formula described by 

Bergmeyer (1978). 

Total glutathione Total glutathione in blood and liver was 

calculated by measuring GSH and GSSG by the fluorometric method of Hissin 

and Hi If (1976) . Addition of whole blood into a tube containing meta-

phosphoric acid and phosphate EDTA buffer resulted in hemolysis and 

breakdown of blood cells. Therefore, the homogenization step was 

omitted for the whole blood supernatant preparation. 

Mercapturic acids Urine mercapturic acid was estimated by 

measuring -SH group concentration before and after alkaline hydrolysis 

of urine. The method of Ellman (1959) was used for the determination of 

-SH group concentration. The sulfhydryl bond of mercapturic acid 

derivatives was hydrolyzed by the addition of 0.5 ml of 2îî NaOH into 

the diluted urine and incubated at 60° for 10 minutes. 

Mercury analysis Mercury in blood, brain, liver, kidney, and 

urine was measured by using the modified flameless atomic absorption spec-

trophotometric method of Leong and Ong (1971), with assistance of personal 

communication from Dr. Henry M. Stahr, Veterinary Diagnostic Laboratory, 

Iowa State University, Ames, lA. The method involved an oxidation of a 

known amount of sample in nitric acid at 50-60° overnight in Hypovials^ 

sealed with a teflon disk, a silicon rubber disk, and an aluminum seal. The 

clear digested sample after proper dilution was placed in a sample bottle 
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and 10 ml of 10% stannous chloride was added to it. A closed air 

aspirator carried volatilized mercury to a gold screen where it was 

collected by amalgamation for 2h minutes. Heat then was applied to the 

amalgam and the mercury was volatilized quickly and produced a sharp 

peak on a strip chart recorder. All glassware was acid washed in 50% 

nitric acid. 

Mercury stock solution was prepared by dissolving methylmercury 

hydroxide in 50 ml redistilled nitric acid and dilution to a volume of 1 

liter. Mercury intermediate solution (100 ug Hg/ml) was prepared by 

dilution of 10 ml of stock solution to 100 ml. Mercury working standard 

(1 ng Hg/ml) was prepared daily by dilution of 1 ml of intermediate 

standard solution to 100 ml. A series of standards (25, 50, 100, 150 ng 

Hg) was run with every 10 samples analyzed. 

Prostaglandin analysis PGE^ and TXB^ in serum was 

measured by radioimmunoassay as described by Hwang et al. (1976) and 

McCosh et al. (1976). The method involved precipitation of each PG with 

specific antiserum and anti rabbit gasima globulin. The PGE^ antisera 

had a cross reactivity of 15% with PGEg and TXB^ antisera did not show 

any cross reactivity. Standards were a gift from the Upjohn Company 

(Kalamazoo, MI) . Tritiated PGE^ and TXB^ were purchased from New 

England Nuclear (Boston, MA). 
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Statistical Analysis 

Results of the clinical and biochemical studies were analyzed by 

factorial analysis of variances (Dr. David Cox, Statistical Laboratory, 

Iowa State University, Ames, Iowa), and means were compared by use of a 

least significant difference (LSD) test at the 5% level of probability 

(Snedecor and Cochran, 1967). 

Seven variables from the behavioral studies, namely : number of 

correct responses (CR), number of incorrect responses (IR), number of 

defaults, total time for correct responses (TTCR), and average time 

of incorrect responses (ATIR), were analyzed by split plot factorial 

analysis of variances (Dr. David Hopper, Behavioral Toxicology Division, 

Veterinary Diagnostic Laboratory, Iowa State University, Ames, Iowa). 

In the original design of the e:^eriment, 29 testing sessions were 

planned for each rat during the e:^osure phase. Some of the rats 

died prior to the last testing session. Since data from sessions 1 to 

27 were available for the majority of the rats, these data were used 

for analysis of the effect of treatments as well as testing session on 

the variables. Because of limitations in the capacity of computer 

memories, data of alternate testing sessions from session ]_ to 27 for 

a total of 14 sessions were used and summarized in order to ran split 

plot factorial analysis of variance. Means of different variables 

were compared for treatment effects by the use of the LSD test at a 

5% level of probability. 
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RESULTS 

Results of Clinical and Biochemical Studies 

The treatment of groups of rats with a total of 18 different treat

ments which contained combinations of three levels of dietary methionine 

(diets A, B and C, Table 2), two levels of atrazine (-atrazine = 0.0 mg, 

+atrazine = 500 mg/kg of diet. Table 3), caused significant changes in the 

rats general appearance, and in physiological, biochemical and behavioral 

parameters. 

The major observable drastic health alteration resulted from methyl-

mercury hydroxide (MeHg) toxicity. Administration of high methylmercury 

hydroxide (MeHg^) for five weeks in the group which received three 

different diets with or without atrazine, resulted in the occurrence of 

classic signs of MeHg toxicity in rats in the following progression: 

roughness of fur, alteration of gait, decrease of food intake, subtle 

widening of hindlimb placement, loss of weight, progressive ataxia, 

dragging and wide spacing of hindlimb during ambulation, crossing 

phenomenonhematuria, frontlimb ataxia, and death. 

A decrease of observable food intake in these groups was detected 

at the fourth week of exposure following alteration of gait. The onset of 

MeHg toxicity signs at about the fourth week of e^osure was approximately 

4-5 days earlier in the groups which received both atrazine and MeHg^, 

^Crossing phenomenon is an exaggerated adduction with crossing over 

the hind limb while the rat is suspended by the tail. 
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The groups of rats treated with low levels of me thy Inter cury 

hydroxide (MeHg^), except for the roughness of fur, did not show other 

signs of MeHg toxicity after five weeks of exposure. A decrease in 

food intake due to MeHg^ or atrazine treatment was not detectable in 

these groups by daily observations. 

A total of six rats died in the course of the experiment. Only one 

rat died due to the method of application of MeHg. The loss of rats 

before the termination of the experiment in the groups receiving MeHg^ 

and atrazine was higher than that of those treated with MeHg^ alone. 

Table 4. The effect of dietairy methionine, methyLmercury hydroxide 
and atrazine on the percent weight gain^ of rats (mean ± SE, 
n=7.44, LSD=10.13) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

76.66 ± 12.50 

70.90± 5.53 

81.40 ± 6.24 

54.21±12.90 

67.37±7.19 

55.17 ± 6.24 

85.8G±13.80 

43.39+ 5.26 

84.59+ 6.15 

69.59+ 8.38 

80.41+ 9.70 

80.99±15.49 

MeHg^ 

-Atrazine 4.35 ± 9.97 24.05 ± 7.24 42.53±15.34 

+Atrazine 21.53±10.00 -1.54±9.09 -0.63± 9.56 

^Significant effect of Met (P < 0.01), MeHg (P < 0.01), Atrazine 
(P < 0.01) and Met x MeHg x Atrazine (P < 0.05). 

^MeHg 1=0.0 mg, MeHg2=0.5 mg, MeHg3= 1.5 mg Hg/kg body weight, and 
-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 
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There was a significant effect of dietary methionine (Met), 

MeHg, and atrazine treatments as well as their interactions on weight 

gain (Table 4) . Weight gain mean comparisons indicated that administra

tion of MeHg caused a decrease in weight gain. Animals fed diet B had 

a significant decrease of weight gain, but with administration of MeHg^ 

and MeHg^, diet B did not cause such weight reduction in comparison to 

Table 5. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on liver weight (% body weight)^ of rats 
(mean ± SE, n=7.06, LSD=0.21) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atarzine 

MeHg 2 

-Atrazine 

+Atrazine 

2.80 ± 0.10 

3.14 ± 0.14 

3.00 ± 0.20 

3.14 ± 0.22 

3.40 ± 0.25 

3.15 ± 0.26 

2.94 ± 0.15 

3.33 ± 0.11 

3.29 ± 0.21 

3.18 ± 0.16 

3.47 ± 0.14 

3.59 ± 0.33 

3.11 ± 0.29 

3.04 ± 0.14 

3.22 ± 0.19 

2.95 ± 0.19 

3.12 ± 0.22 

3.28 ± 0.22 

a 
Significant effect of MeHg (P < 0.10). 

b 
MeHg =0.0 mg, MeHg^=0.5 mg, MeHg =1.5 mg Hg/kg body weight, and 

-Atrazine=cr.0 mg, +Atrazirie=500 mg/kg diet. 
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the groups receiving diet A and C and MeHg. Administration of atrazine 

in the diet to the rats receiving diet B also resulted in a decrease in 

weight gain. In the groups which received MeHg^» only the groups which 

were fed diet C without atrazine showed a greater weight gain in 

cOTiparison to those which received both MeHg, atrazine and diet C. 

Table 6. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on the kidney weight (% body weight)^ of rats 
(mean ± SE, n=7, LSD=0.11) 

Toxicant* Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

0 . 6 8  ±  0 . 0 2  

0.97 ± 0.18 

0.81 ± 0.03 

0.91 ± 0.04 

1.57 ± 0.15 

1.66 ± 0.19 

0.70 ± 0.02 

0.89 ± 0.04 

0.85 ± 0.03 

0.92 ± 0.03 

1.54 ± 0.13 

1.94 ± 0.13 

0.72 ± 0.02 

0.81 ± 0.04 

0.85 ± 0.03 

0.86 ± 0.03 

1.40 ± 0.13 

1.69 ± 0.29 

Significant effect of MeHg and atrazine (P < 0.01). 

^MeHg]_=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg Hg/kg body weight, and 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 



www.manaraa.com

57t-

Liver and kidney weights as percent of body weight at the end of 

the experiment were calculated and are shown in Tables 5 and 6, respec

tively. There were no statistically significant differences among the 

means of liver weight as percent of body weight due to dietary Met and 

atrazine treatments (Table 5). The response of kidney to the treatments 

was more pronounced than that of liver. The effect of both MeHg and 

atrazine on excess kidney weight was highly significant (Table 6) . This 

effect was more distinct in the groups of rats treated with 1.5 mg MeHg. 

Dietary methionine did not affect kidney weight. 

The mean concentrations in the blood, liver, kidney and brain of 

treated rats are shown in Tables 7, 8, 9, and 10, respectively. When 

MeHg^ was administered, the occipital lobe of rat brain accumulated a 

larger amount of mercury per gram of tissue in ccxnparison to the other 

tissues. 

The concentration of mercury in the blood was significantly affected 

by MeHg treatment as well as by its interaction with dietary Met (Table 7). 

The addition of atrazine to the diet did not cause a significant change in 

blood mercury concentration. As the dose of MeHg increased, the mean 

blood mercury increased greatly. The Met deficient diet (diet B) 

produced a significant increase of blood mercury only in the groups of 

rats treated with MeHg^. 

The concentration of mercury in the liver was significantly increased 

with increasing dosage of MeHg (Table 8). Mean comparisons of liver 

mercury concentration revealed that only those groups treated with MeHg^ 

showed a significant increase of mercury concentration in the liver due to 

the presence of atrazine in the diet. There was no significant effect of 
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dietary methionine treatments on the accumulation of mercury in the liver. 

The kidneys of groups of rats that were fed diets A, B, or C showed 

increases of mercury concentration in response to an increase in MeHg 

Table 7. The effect of dietary methionine, methylmercxiry hydroxide, 
and atrazine on the mercury concentration^ (ug/g) in the 
whole blood of rats (mean ± SE, n=6.66, LSD=66.5) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 0.0 0.0 0.0 

+Atrazine 0.0 0.0 0.0 

MeHg^ 

-Atrazine 166 ± 24 161± 23 174 ± 29 

+Atrazine 199 ± 42 182 ± 23 135 ± 26 

MeHg 2 

-Atrazine 560± 123 630± 62 588± 54 

+Atrazine 518 ± 97 824 ± 84 631± 103 

^Significant effect of MeHg (P < 0.01), and MeHg x Met (P < 0.10). 

b 
MeHgT_—0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg Hg/kg body weight, and 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 
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Table 8. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on the mercury concentration^ (ug/g) in the 
liver of rats (mean ± SE, n=6.58, LSD=17.2) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

0 . 0  

0 . 0  

20.2 ± 1.0 

30.6 ± 7.1 

87.7 ±14.2 

128.6 ±27.9 

0 . 0  

0 . 0  

31.9 ± 3.0 

28.0 ± 1.9 

111.0 ±10.5 

121.6 ±26.6 

0 . 0  

0 . 0  

23.2 ± 1-7 

22.7 ± 1.9 

86.0 ±12.1 

158.6 ±52.0 

^Significant effect of MeHg (P < 0.01), atrazine (P < 0.05) and 
MeHg x atrazine (? < 0.10). 

^MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg Hg/kg body weight, and 
-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 
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dose (Table 9). The addition of atrazine to the diet had no significant 

effect on kidney mercury concentration. Diet B, in the groups of rats 

treated with MeHg^/ caused a significant accumulation of mercury in 

kidney compared to those which received MeHg^ and diets A or C. However, 

groups of rats that were fed diet B and treated with MeHg^ showed a 

lower accumulation of mercury in the kidney as compared with those which 

were treated with MeHg^ and diet A or C-

Mercury concentration in the occipital lobe was increased 

significantly only by an increase in the dose of MeHg (Table 10) ; dietary 

methionine and atrazine did not have significant effects. 

Urinary excretion of mercury for 12-14 hours at periods I, II and 

III (urines which were collected after 1, 3, and 5 weeks of administration 

of MeHg and atrazine) is shown in Tables 11, 12, and 13, respectively. 

At the end of period I, the excretion of mercury was significantly 

increased by an increase in dose of MeHg (Table 11). There were no 

significant effects of dietary methionine and atrazine on urine mercury 

excretion during this period. 

Analysis of mercury content of urine collected during period II 

indicates the excretion of mercury was significantly increased due to 

an increase of MeHg dose (Table 12) except for the rats fed diet A with 

atrazine and treated with MeHg^ and MeHg^. 

The administration of atrazine in the diet of rats fed diet A and 

treated with MeHg^, caused an increase in mercury excretion in the urine 

during period II. Although the mean urine mercury excretion of the group 

fed diet C, MeHg^ and atrazine was 1.5 times higher than that of the 

group fed diet C, MeHg^ and no atrazine, this increase was not statis-
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Table 9. The effect of dietary methionine, methylmerciiry hydroxide 
and atrazine on the concentration of mercury^ (ug/g) in 
kidney of rats (mean ± SE, n=6.67, LSD=16.5) 

Toxicant* Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

0 . 0  

0 . 0 .  

85.5 ± 4.4 

104.8 ± 3.7 

190.4 ±23.9 

181.2 ±24.9 

0 .0  

0 . 0  

147.2 ± 22.6 

118.7± 6.6 

171.4± 9.9 

167.6 ± 17.6 

0.0 

0.0 

122.7 ± 12.5 

100.2 ± 11.2 

187.5 ± 9.0 

209.7± 11.8 

^Significant effect of MeHg (P < 0.01) and MeHg x Met (P < 0.05). 

^MéHg2=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg Hg/kg body weight, and 
-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 
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Table 10. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on the mercury concentration^ (ug/g) in the 
occipital lobe. (mean ± SE, n=6.83, LSD=55.6) 

Toxicant Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

0 . 0  

0 . 0  

6.2 ± 1.1 

9.4 + 1,2 

46.0 ± 7.7 

52.9 ± 9.6 

0 . 0  

0 . 0  

8.5 ± 0.6 

7.8 ± 1.1 

51.3 ± 2.0 

50.2 ± 6.6 

0 . 0  

0 . 0  

9.2 + 0.9 

9.1 ± 1.0 

42.6 + 6.8 

55.7 + 12.0 

^Significant effect of MeHg (P < 0.01). 

^MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg Hg/kg body weight, and 
-Atrazine=0-0 mg, +Atrazine=500 mg/kg diet. 
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Table 11. The effect of dietary methionine, methylmerciiry hydroxide, 
and atrazine on urine mercury excretion^ (nq/dav) during 
period I (mean ± SE, n=7.08, LSD=93.4) 

Toxicant ̂  Diet A Diet B Diet C 

MeHg^ 

-Atrazine 0.0 0.0 0.0 

+Atrazine 0.0 0.0 0.0 

MeHg^ 

-Atrazine 90.2 ± 31.6 63.3 ± 20.6 78.7 ± 29.7 

+Atrazine 133.7 ± 34.4 100.4 ± 47.8 56.0 ± 25.2 

MeHg 2 

-Atrazine 220.1 ± 55.3 155.4 ± 40.6 329.1 ± 70.9 

+Atrazine 527.2 ±137.3 383.7 ±194.0 217.7 ± 67.4 

^Significant effect of MeHg (P < 0.01). 

^MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, and 

-Atrazine-0.0 mg, +Atrazine=500 mg/kg diet. 
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Table 12. The effect of dietary methionine, methylmercury hydroxide 
and atrazine on urine mercury excretion^ (ng/day) during 
period II (mean ± SE, n=7.25, LSD=434) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

0 . 0  

0 . 0  

1066.0 ± 374.5 

1043.4 ± 245.1 

991.4 ± 388.2 

1691.8± 749.2 

0 . 0  

0 . 0  

298.4± 135.7 

740.4 ± 140.4 

1158.7 ± 349.1 

2725.1± 791.5 

0 . 0  

0 . 0  

501.7 ±178.3 

676.4 ±136.3 

1045.0 ± 342.0 

1456.4 1 367.7 

^Significant effect of MeHg (P < 0.01) and Atrazine (P < 0.05). 

^MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, and 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 
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Table 13. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on urine mercury excretion^ (ng/day) during 
period III (mean ± SE, n=6, LSD=383) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

0 . 0  

0 . 0  

434.7 ± 163.9 

1189.0 ± 251.1 

1645.8 ± 420.8 

16.7.7 ± 337.8 

0 , 0  

0 . 0  

843.5 ± 218.2 

904.7± 120.5 

1218.7±436.3 

1774.2± 514.5 

0 . 0  

0 . 0  

1389.4± 145.3 

812.4 ± 185.5 

1472.0 ± 436.8 

1584.0 ± 514.0 

^Significant effect of MeHg (P < 0.01). 

^MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, and 
-Atrazine=0.0 mg, +Atrazine=500 mgk/g diet. 



www.manaraa.com

66 

cally significant. The overall effect of atrazine treatment during period 

II on urine mercury excretion was more pronounced in the groups which 

received high doses of MeHg than those which received low doses of MeHg. 

Dietary methionine by itself did not have a significant effect on urine 

mercury excretion during this period. 

The mean urine mercury excretion during the period III is shown in 

Table 13. The administration of high doses of MeHg caused an increase 

in urinary excretion of mercury during this period. This effect was 

uniformly seen in the groups of rats fed any of the three diets with 

atrazine. The increase in urine mercury excretion due to the high dose 

of MeHg was also significant in groups of rats which were fed diet A 

without atrazine. Comparison of the means of urinary mercury excretion 

by groups of rats at different periods indicates that, generally, mercury 

excretion in urine increased as the number of days of exposure to MeHg 

increased. This trend was more consistent in the groups of rat which 

received atrazine in their diet. 

The activity of whole blood glutathione peroxidase (GSH-Px) was 

significantly decreased with an increase in MeHg dose (Table 14) . Mean 

enzyme activity (Table 14) showed an increase of activity related to 

atrazine treatment. Significant differences were found for rats which 

were fed diet C and no MeHg, and in groups fed diet B or C with MeHg^. 

Feeding rats with diet A, with or with atrazine, and MeHg^ resulted 

in a highly significant increase in the specific activity of the enzyme 

GSH-Px of the liver in comparison with the two other dietary groups. Rats 

which were fed diet B showed a lower liver GSH-Px activity than did groups 

fed diets A or C. However, the lower activity of enzyme was statistically 
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Table 14. The effect of dietary methionine, methylmercury hydroxide 
and atrazine on whole blood glutathione peroxidase activity^ 
(U/ml) (mean ± SE, n=7, LSD=2.7) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 31. 95 ± 2. 47 35. 67 ± 2. 32 31. 75 ± 1. 14 

+Atrazine 31. 84 ± 2. 04 35. 31+ 3. 08 39. 34+ 2. 36 

MeHg^ 

-Atrazine 25. 70 ± 2. 71 22. 16 + 2. 48 26. 51± 5. 08 

+Atrazine 27. 66 ± 1. 77 31. 23 ± 2. 56 30. 18 ± 3. 34 

MeHg^ 

-Atrazine 24. 11+ 3. 59 18. 35 + 0. 93 21. 85 ± 1. 74 

+Atrazine 24. 71+2. 25 20. 29 ± 1. 20 22. 75 ± 2. 14 

^Significant effect of MeHg (P < 0.01) and atrazine (P < 0.05). 

^MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, and 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 

significant only in the group which was also treated with atrazine or MeHg^-

Rats fed diet C alone had a significant increase in enzyme activity in 

comparison with rats fed the other diets. The rats which received diet C 

with MeHg^ and no atrazine also showed a higher enzyme activity compared 

with those which received diet B with MeHg and no atrazine. 

A factorial analysis of variance did not indicate any significant 

effects of either toxicant on liver GSH-Px. Least significant difference 
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Table 15. The effect of dietary methionine, methyMercury hydroxide, 
and atrazine on liver glutathione peroxidase activity^ 
(xlO~^U/g) in rats (mean ± SE, n=7.06, LSD=1.77) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

6.14+ 1.40 

7.58+ 1.10 

8.65 ± 1.29 

8.08 ± 0.93 

10.47 ± 1.63 

11.58 ± 2.87 

6.46 ± 1.65 

5.86 ± 0.54 

7.98 ± 1.98 

8.47 ± 1.07 

6.25 ± 1.72 

8.06 ± 1.39 

11.64± 3.32 

7.67+0.89 

9.97 ±1.43 

9.35 ±1.24 

9.22 ±1.22 

9.53 ±1.50 

^Significant effect of met (P < 0.05). 

^MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 rr.g/kg body weight, and 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 

tests, however, showed some inconsistent and non-directional effects 

of atrazine and MeHg on the specific activity of this enzyme in liver. 

The activity of liver glutathione reductase (GSH-Rd) which reduces 

oxidized glutathione, was not affected by any of the treatments (Table 16). 

The measurement of the specific activities of glutathione-S-transferases 

(GSH-S-trans) of rat liver for conjugation of reduced glutathione and 1,2-

dichloro-4-nitrobenzene revealed that there was a statistically signif-
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Table 16. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on liver glutathione reductase activity 
(xlO"4 u/g) in rats (mean ± SE, n=6.94, LSD=1.77) 

Toxicant Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

3.20 ± 0.80 

4.04 ± 0.94 

4.40 ± 1.05 

5.37 ± 1.48 

4.82 ± 1.02 

4.47 ± 0.99 

3.77 ± 0.98 

4.50 ± 1.29 

3.72 ± 0.82 

4.14 ± 1.09 

5.37 ± 1.58 

6.10 ± 2.69 

3.92 ± 0.85 

4.34 ± 0.87 

3.30 ± 1.70 

4.08 ± 1.13 

5.19 ± 1.28 

4.95 ± 1.59 

^MeHg^=0.0 mg, MeHg2=0.5 mg, MeHg2=1.5 mg/kg body weight, and 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 

leant effect of MeHg auid atrazine and an interaction effect of MeHg 

and dietary Met on the activity of the enzymes (Table 17). Administration 

of low or high levels of MeHg in rats fed diet A or B, caused decrease 

and increase of specific activity of this enzyme in liver respectively. 

The effects of MeHg were exaggerated in rats fed diet A with MeHg^ and in 

rats fed diet B with MeHg^- In the groups fed diet C, the administration 

of MeHg^ and MeHg^ caused an increase and a decrease of enzyme specific 

activity, respectively. Feeding the Met deficient diet (diet B) resulted 
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Table 17. The effect of dietary methionine, methylmerciiry hydroxide, 
and atrazine on the activity of liver glutathione-S-trans-
ferases^ (U/g) in rats (mean ± SE, n=6.89, IiSD=2.96) 

Toxicant ̂  Diet A Diet B Diet C 

MeHg 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

31.00 ± 4.88 

26.74 ± 2.40 

30.29 ± 3.04 

24.44 ±1.95 

25.03 ± 2.27 

23.15 ± 2.69 

26.17 ± 2,21 

20.35 ± 3.05 

36.87 ± 2.12 

26.96 ± 3.31 

31.01± 2.23 

26.81± 2.64 

33.41+ 3.39 

26.91± 3.57 

36.83 ± 2.39 

25.27±2.24 

27.41+ 2.25 

21.25 ± 2.05 

Significant effect of MeHg (P < 0.05), MeHg x met (P < 0.01) and 
atrazine (P 0.01). 

y 
MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, and 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 

in a decrease in activity of GSH-S-trans in rats treated with or 

without atrazine and no MeHg, i.e. MeHg^. However, enzyme activity 

was high when MeHg^ or MeHg^ was administered in groups fed diet B with 

or without atrazine in the diet. The groups which received atrazine 

in their diet showed a significant decrease in liver GSH-S-trans specific 

activity in comparison to those which did not receive atrazine. 
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Table 18. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on prostaglandin E concentration^ (ng/ml) 
in serum of rats (mean ± SE, n=b.72, LSD=0.86) 

Toxicant ̂  Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

0.88 ± 0.19 

1.29 ± 0.43 

1.22 ± 0.28 

1.88 ± 0.27 

3.32 ± 1.29 

2.59 ± 0.46 

1.48 ± 0.43 

2.10 ± 0.99 

1.74 ± 0.37 

1.56 ± 0.21 

4.82 ± 1.67 

5.61 ± 1.52 

1.05 ± 0.24 

2.00 ± 0.58 

2.28 ± 0.48 

1.29 ± 0.32 

4.46 ± 1.24 

3.70 ± 1.12 

^Significant effect of MeHg (P < 0.01) and Met (P < 0.10). 

^MeHg3^=0.0 mg, MeHg2= 0.5 mg, MeHg =1.5 mg/kg body weight, and 
-Atrazine=0.0 mg/kg diet, +Atrazine=500 mg/kg diet. 

A significant increase in ex-vivo synthesis of prostaglandin E^ 

(PGE^) in blood caused by increasing MeHg dose is shown in Table 18. 

Dietary Met has a slight effect on ex-vivo synthesis of PGE^. Although, 

as shown in Table 18, the rats receiving diet B showed an elevated mean 

serum PGE^ concentration, only in the group which received diet B, MeHg^ 

and atrazine did the elevation of PGE^ in the serum reach statistical 

significance in comparison to the groups which were fed diet A or C with 
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Table 19. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on thromboxane B2 concentration^ (ng/ml) 
in serum of rats (mean ± SE, n=5.56, LSD=31.2) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

19.1 ± 4.9 

52.7 ± 13.2 

42.3 ± 17.0 

24.0 ± 5.3 

34.9 ± 20.7 

49.4 ± 12.8 

34.2 ± 12.2 

24.9 ± 9.5 

45.1 ± 12.5 

45.7 ± 8.3 

157.4 ± 55.7 

208.9 ± 47.6 

27.5 ± 10.3 

48.0 ± 17.0 

116.4 ± 47.7 

26.5 ± 6.8 

180.7 ± 62.5 

172.9 ± 36.4 

^Significant effect of MeHg, Met and MeHg x Met (P < 0.01). 

b 
MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 

MeHq^ and atrazine. Atrazine treatment had no significant effect on the 

ex-vivo synthesis of PGE^ in blood. 

Overall factorial analysis of variances for thromboxane (TXB^) 

concentration in serum of rats indicated a highly significant effect of 

MeHg, Met, as well as their interaction on the ex-vivo TXB^ synthesis 

in blood (Table 19). However, the least significant mean difference test 
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revealed that only the rats which were fed diet B or C, with MeHg^ or 

MeHg^, had a significant increase in ex-vivo synthesis of TXB^ in 

the blood. The high dose of MeHg also caused a significant increase 

in ex-vivo synthesis of TXB^ in the blood of groups receiving atrazine 

in diets B and C. The effect of MeHg on ex-vivo synthesis of blood 

TXB^ in rats fed diet A was not statistically significant. 

Analysis of whole blood reduced glutathione (GSH) showed a signif

icant effect of MeHg, Met, atrazine and also an interaction of MeHg 

and atrazine treatments on the concentration of whole blood GSH at the 

end of the experiment (Table 20) . Except for the rats which were fed 

diet A with MeHg^ and MeHg^, all rats given atrazine in their diet had 

a significant increase of whole blood GSH after 5 weeks. The MeHg 

treatment effect was consistent on whole blood GSH in rats which 

received atrazine in the diet. MeHg^ and MeHg^ caused a decrease and 

increase in whole blood GSH respectively, in comparison to control rats. 

Although the overall factorial analysis of variance indicated a signif

icant effect of dietary Met treatments on whole blood GSH, the mean 

comparison for least significant differences did not show any 

directional and meaningful trend on particular groups of rats. 

MeHg had a highly significant effect on rats whole blood oxidized 

glutathione (GSSG) (Table 21). Administration of MeHg^ in rats which 

were fed diet A, without atrazine, caused a significant decrease in 

whole blood GSSG, but such a response was not seen in the groups 

which received atrazine in the diet. MeHg treatments of rats 

receiving diet B or C without atrazine caused a significant decrease 

of whole blood GSSG. 
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Table 20. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on whole blood reduced glutathione^ (ug/ml) 
in rats (mean ± SE, n=7.17, LSD=0.12) 

Toxicant' Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

0.69 ± 0.15 

0.69 ± 0.09 

0.48 ± 0.16 

0.84 ± 0.07 

0.47 ± 0.11 

0.49 ± 0.19 

0.37 ± 0.09 

0.90 ± 0.08 

0.76 ± 0.11 

1.06 ± 0.06 

0.53 ± 0.11 

0.66 ± 0.13 

0.71 ± 0.04 

0.79 ± 0.09 

0.35 ± 0.08 

0.89 ± 0.18 

0.59 ± 0.12 

0.79 ± 0.15 

Significant effect of atrazine (P < 0.01), MeHg, Met and MeHg x 
atrazine (P < 0.05). 

MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, 
-Atrazine=0.0 mg, and +Atrazine-500 mg/kg diet. 

Analysis of whole blood total glutathione (TGSH=GSH+GSSG) indicated 

a significant effect of MeHg and Met treatments as well as MeHg and 

atrazine interaction effect on TGSH (Table 22). Least significant 

differences of means in Table 22 indicated that MeHg caused a significant 

decrease of whole blood TGSH in rats which were fed diet A, B, or C 

without atrazine. In rats fed atrazine, MeHg^ caused a decrease of 
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Table 21. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on whole blood oxidized glutathione^ (ug/ml) 
in rats (mean ± SE, n-»7.17, LSD=0.07) 

Toxicant & Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

0.52 ± 0.06 

0.50 ± 0.05 

0.39 ± 0.02 

0.47 ± 0.07 

0.56 ± 0.05 

0.47 ± 0.08 

0.76 ± 0.15 

0.68 ± 0.05 

0.48 ± 0.03 

0.55 ± 0.06 

0.45 ± 0.08 

0.43 ± 0.06 

0.57 ± 0.03 

0.54 ± 0.08 

0.50 ± 0.14 

0.50 ± 0.05 

0.45 ± 0.06 

0.25 ± 0.05 

Significant effect of MeHg, MeHg x Met (P < 0.05) and MeHg x 
atrazine (P < 0.10). 

^MeHg]^=0.0 mg, MeHg2=0.5 ing, MeHg3=1.5 mg/kg body weight, 

-Atrazine-O.0 mg, +Atrazine=500 mg/kg diet. 

TGSH; whereas, MeHg^ caused an increase of TGSH of whole blood in the 

groups fed diet A or C with atrazine. Significant effects of dietary 

Met treatments were observed in the rats which were fed diet B, i.e., 

an increase of TGSH in whole blood when rats were treated with MeHg^ 

or MeHg^, with or without atrazine as compared with rats fed diet A or C. 

No significant effects of dietary Met were detected in the groups treated 
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Table 22. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on whole blood total glutathione^ (ug/ml) 
in rats (mean ± SE, n=7.17, LSD=0.15) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

1.21 ± 0.20 

1.19 ± 0.12 

0.88 ± 0.15 

1.31 ± 0.12 

1.03 ± 0.13 

0.96 ± 0.23 

1.56 ± 0.23 

1.59 ± 0.12 

1.24 ± 0.12 

1.61 ± 0.10 

0.99 ± 0.12 

1.09 ± 0.12 

1.28 ± 0.07 

1.33 ± 0.07 

0.86 ± 0.14 

1.52 ± 0.19 

1.05 ± 0.10 

1.04 ± 0.19 

^Significant effect of MeHg, Met, and MeHg x atrazine (P < 0.05). 

^MeHg2=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, 

-Atrazine-0.0 mg, +Atrazine=500 mg/kg diet. 

with MeHg^. The elevation of TGSH in whole blood due to atrazine was 

significant only in the rats which were treated with MeHg^. Concentration 

of liver GSH, GSSG, and TGSH unexpectedly were not affected by either 

dietary treatments or toxicants (Tables 23, 24, and 25). 
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Table 23. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on liver reduced glutathione (ug/mg) in rats 
(mean ± SE, n=7.11, LSD=1.14) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHgg 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

2.28 ± 0.46 

2.89 ± 0.39 

2.24 ± 0.46 

2.48 ± 0.33 

2.36 ± 0.30 

3.21 ± 0.52 

2.21 ± 0.31 

2.10 ± 0.21 

2.11 ± 0.24 

2.71 ± 0.53 

2.92 ± 0.40 

2.72 ± 0.62 

3.01 ± 0.38 

2.59 ± 0.35 

2.42 ± 0.33 

2.51 ± 0.33 

2.67 ± 0.45 

2.24 ± 0.59 

^MeHg =0.0 mg, MeHg2=0.5 mg, MeHg2=1.5 mg/kg body weight, -Atrazine= 
0.0 mg, 4-Atrazine=500 mg/kg diet. 
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Table 24. The effect of dietary methionine, methylmercuryj hydroxide, 
and atrazine on liver oxidized glutathione^ (ug/mg) in 
rats (mean ± SE, h=7.11, LSD=0.89) 

Toxicant® Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

0.44 ± 0.12 

0.55 ± 0.12 

0,43 ± 0.07 

0.34 ± 0.08 

0.38 ± 0.08 

0.64 ± 0.14 

0.37 ± 0.09 

0.38 ± 0.09 

0.44 ± 0.11 

0.43 ± 0.13 

0.45 ± 0.08 

0.43 ± 0.06 

0.55 ± 0.11 

0.48 ± 0.07 

0.50 ± 0.10 

0.50 ± 0.05 

0.45 ± 0.06 

0.38 ± 0.07 

*MeHg^=0.0 mg, MeHg2=0.5 mg, MeHg2=1.5 mg/kg body weight, -Atrazine= 

0.0 mg, +Atrazihe=500 mg/kg diet. 
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Table 25. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on liver total glutathione^ (ug/mg) in rats 
(mean ± SE, n=7-ll, LSD=1.28) 

Toxicant 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

2.72 ± 0.56 

3.42 ± 0.45 

2.67 ± 0.45 

2.83 ± 0.35 

2.74 ± 0.33 

3.90 ± 0.63 

2.58 ± 0.36 

2.48 ± 0.26 

2.55 ± 0.31 

3.14 ± 0.64 

3.30 ± 0.45 

3.15 ± 0.65 

3.56 ± 0.42 

3.07 ± 0.36 

2.93 ± 0.38 

3.01 ± 0.33 

3.25 ± 0.51 

2 . 6 2  ±  0 . 6 0  

^iyieHg^=0.0 mg, MeHg2=0.5 mg, MeHg2=1.5 mg/kg body weight, -Atrazine= 

0.0 mg, +.^rtrazir.e=500 mg/kg diet. 
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Measurement of conjugated sulfhydryl groups as a crude estimator 

of mercapturic acids excretion in the urine across period I, II and III 

were also employed to obtain further information about the effects of 

treatments on glutathione metabolism in this experiment. The urinary 

excretion of mercapturic acids at different periods of time (periods I, 

II, and III) was affected significantly by administration of atrazine 

in the diet (Tables 26, 27, and 28). A significant increase of 

mercapturic acids excretion due to atrazine was observed in the urine 

collected during period I from rats treated with MeHg^ and rats 

treated with MeHg^ and fed diet A or B (Table 25) . Rats fed diet B 

and given MeHg^ also showed a significant increase of mercapturic acids 

excretion in urine during period I due to the presence of atrazine 

in the diet. 

Analysis of urine collected from rats during period II revealed 

that both MeHg and atrazine had a significant effect on urine mercapturic 

acids excretion (Table 27). With the exception of the groups which 

were fed diet A and no atrazine, the administration of MeHg^ caused 

a significant increase of mercapturic acid excretion in the urine of 

rats in comparison to the groups treated with MeHg^ or MeHg^ and were 

fed any of the three diets with or without atrazine. With respect to 

period I, the excretion of mercapturic acids in the urine was generally 

elevated during period II. 

There was a significant increase in mercapturic acids excretion 

in the urine of rats during period III due to atrazine in rats treated 

with no MeHg (Table 28). The effects of atrazine in the other groups 

which were treated with MeHg^ or MeHg^ were not significant, with 
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Table 26. The effect of dietary 
and atrazine on urine 
X 10~^.mol/day) during 

methionine, methylmercury hydroxide, 
mercapturic acid excretion^ (-SH 
period I (mean ± SE, N=7.61, LSD=4.35) 

Toxicant^ Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

H-Atrazine 

MeHgg 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

17.22 ± 0.20 

14.91± 3.05 

15.17 ± 2.67 

23.59 ± 5.17 

8.43 ± 2.62 

20.36 ± 8.49 

9.63 ± 1.22 

20.14 ± 5.71 

6.72 ±1.35 

14.50 ± 4.08 

8.29 ± 2.11 

16.93 ± 6.35 

15.33 ± 6.37 

10.58 ± 3.15 

11.07 ± 2.34 

11.18+ 3.24 

10.05 ± 2.51 

21.04 ±6.27 

^Significant effect of atrazine (P < 0.01). 

MeHg]_=0.0 mg, MeHg2=0-5 mg, MeHg3=1.5 mg/kg body weight, 
-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 
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Table 27. The effect of dietary methionine, methylmercury hydroxide, ^ 
and atrazine on urine mercapturic acid excretion^ (-SH x 10 ^ 
mol/day during period II in rats (mean ± SE, n=7.44, LSD=5.48) 

Toxicant Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

27.97 ± 5.06 

25.46 ± 3.43 

30.02 ± 6.39 

38.80 ± 4.59 

29.64 ± 4.34 

25.60 ± 6.48 

25.43 ± 6.16 

29.95 ± 4.39 

36.69 ± 8.09 

38.82 ± 3.67 

26.47 ± 8.63 

28.31 ± 5.79 

25.36 ± 3.06 

30.80 ± 4.46 

30.11 ± 2.78 

35.08 ± 3.15 

15.20 ± 3.92 

29.67 ± 6.10 

^Significant effect of MeHg (P < 0.01) and atrazine (P < 0.10). 

^MeHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, 

-Atrazine=0.0 mg, +Atrazine-500 mg/kg diet. 
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Table 28. The effect of dietary methionine, methylmercury hydroxide, 
and atrazine on urine mercapturic acid excretion^ (-SH x 
10~ mol/day) during period III (mean ± SE, n=6.67, LSD=5.84) 

Toxicant Diet A Diet B Diet C 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg 2 

-Atrazine 

+Atrazine 

8.14 ± 3.03 

17.33 ± 6.52 

18.58 ± 6.41 

19.00 ± 4.20 

15.97 ± 4.76 

18.19 ± 2.99 

10.96 ± 2.79 

26.12 ±10.45 

14.12 ± 3.30 

16.18 ± 3.63 

10.50 ± 3.23 

16.37 ± 5.84 

8.83 ± 4.17 

36.42 ± 8.51 

13.03 ± 3.93 

16.03 ± 2.04 

15.10 ± 3.96 

17.23 ± 7.87 

^Significant effect of atrazine (P < 0.01) and MeHg x atrazine 
(P < 0.05). 

^^eHgi=0.0 mg, MeHg2=0.5 mg, MeHg3=1.5 mg/kg body weight, 

-Atrazine=0.0 mg, +Atrazine=500 mg/kg diet. 
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the exception of rats fed diet B and treated with MeHg^. 

In the course of the experiment, the excretion of mercapturic 

acids in the urine of all groups generally increased until about the third 

week (period II) of the exposure phase, and thereafter, it decreased. 

The elevation of mercapturic acids excretion at period II was also 

observed with the groups of rats which did not receive the toxicant. 

A factorial analysis of variance for the effect of variables (MeHg, 

Met, and atrazine) and their interactions with each other on the clinical, 

and biochemical parameters are shown in Tables 29, 30, 31, and 32. The 

F values were tested for significance at P<0.01, P<0.05, and P<0.10 

and these values are designated with letters a, b, and c, respectively. 

Results of Behavioral Studies 

After a total of 20-26 training sessions in the pre-exposure phase, 

the average number of correct and incorrect responses in the last two 

training sessions of all groups of rats in both replicates were 28.86 and 

10.53, respectively. The average number of correct: and incorrect responses 

in the last two training sessions in both replicates are shown in Table 33. 

The factorial analysis of variance also indicates that none of the 

dietary methionine levels of toxicants alone had effects on the behavioral 

variables. Only the dietary methionine and atrazine interaction showed a 

significant effect on IR, TTCR and ATCR in one of the replicates (Tables 

34 and 35). Daily testing sessions had a highly significant effect on the 

behavior of rats during the e:^osure phase, and most of the variables 

showed significant effects at P< 0.01 (Tables 34 and 35). 
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Table 29. Analysis of variance of % weight gain, liver and kidney weight as % of body weight 
and urine mercapturic acid excretion 

F value 

Source of 
variation df 

% wt. Liver wt. Kidney wt. Urine mercapturic acid 
gain % of B.W. % of B.W. I II III 

Mercury (Mer) 2 

Methionine (Met) 2 

Mer X Met 4 

Atrazine (Atr) 1 

Mer X Atr 2 

Met X Atr 2 

Mer X Met x Atr 4 

67.01 

3.01^ 

0 . 6 8  

16.27^ 

0.21 

1.03 

3.23^ 

2 . 6 8  

1.78 

0.20 

0.29 

0.81 

0.43 

0.75 

119.00 

1.03 

0.51 

12.32° 

. 1.42 

0 .28  

0.70 

0.02 

1.03 

0.97 

9.08^ 

1.38 

1.03 

0.61 

5.02 

0.55 

0.30 

2.64 

0.08 

0.73 

0.63 

a 

0.43 

0 . 2 2  

0.88 

8.24 

3.42^ 

0.76 

0.59 

^Significant effect of variation sources P < 0.01. 

^Significant effect of variation sources P < 0.10. 

"^Significant effect of variation sources P < 0.05. 
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Table 30. Analysis of variance of blood and liver enzymes activity and prostaglandin synthesis 
in the blood 

F value 

Source of Blood Liver Liver Liver 

variation df GSH-Px GSH-Px GSH-Rd GSH-S-Trans TXB^ PGE^ 

Mercury (Mer) 2 35.39* 1.01 1.69 3.66^ 24.97® 20.12® 

Methionine (Met) 2 0.59 3.31^ 0.11 0.22 8.52® 2.49^ 

Mer X Met 4 1.53 0.98 0.50 3.90® 5.49® 0.99 

Atrazine (Atr) 1 5.49^ 0.10 0.71 26.09® 0.00 0.04 

Mer X Atr 2 0.85 0.94 0.14 1.23 2.05 0.58 

Met X Atr 2 0.71 0.54 0.02 0.36 1.05 0.27 

Mer X Met x Atr 4 0.99 0.17 0.08 0.30 0.80 0.47 

^Significant effect of variation sources P < 0.01. 

^Significant effect of variation sources P < 0.05. 

"^Significant effect of variation sources P < 0.10. 
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Table 31. Analysis of variance of liver and blood glutathione 

F value 

Sources of 
variation df 

Liver 
GSH 

Liver 
GSSH 

Total 
liver 

glutathione 
Blood 
GSH 

Blood 
GSSG 

Total 
blood 

glutathione 

Mercury (Mer) 2 0.62 0.16 0.67 3.72^ 6.35b 7.58% 

Methionine (Met) 2 0.23 1.40 0.44 3.81^ 2.01 4.82% 

Mer X Met 4 0.87 0.61 0.88 1.52 3.81% 0.93 

Atrazine (Atr) 1 0.33 0.03 0.30 12.46*) 0.13 6.773 

Mer X Atr 2 0.30 0.27 0.19 3.37a 2.83C 5.0&3 

Met X Atr 2 1.23 1.39 1.54 0.47 0.03 0.19 

Mer X Met x Atr 4 0.43 1.06 0.59 0.17 0.52 0.27 

^Significant effect of variation sources P < 0.05. 

^Significant effect of variation sources P < 0.01. 

"^Significant effect of variation sources P < 0.10. 
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Table 32, Analysis of variance of mercury concentrations in blood, liver, kidney, brain and urine 

F value 

Source of Blood Liver Kidney Brain Urine I Urine II Urine III 
variation df mercury mercury mercury mercury mercury mercury mercury 

Mercury (Mer) 1 16.75® 97.89® 66.91® 193.18® 18.00® 10.86® 10.57® 

Methionine (Met) 2 2.29 0.20 0.99 0.02 0.83 0.67 0.16 

Mer X Met 2 2.64^ 0.31 0
 

0
 

0
 

0.06 0.19 1.93 0.35 

Atrazine (Atr) 1 0.98 5 . 7 3 C  0.18 1.43 2.48 5.I7G 0.58 

Mer X Atr 1 0.72 4.75b 0.61 0.84 1.43 2.10 0.12 

Met X Atr 2 2.10 1.13 0.64 0.57 2.15 0.91 0.98 

Mer X Met x Atr 2 2.10 0.93 1.53 0.45 1.11 0.29 1.45 

^Significant effect of variation sources P < 0.01 

^Significant effect of variation sources P < 0.10. 

"^Significant effect of variation sources P < 0.05. 
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Table 33. The average number of correct and incorrect responses of groups 
of rats at the last two training sessions of .the preexposure 
phase 

Diet A Diet B Diet C 

Toxicant Rep I Rep II Rep I Rep II Rep I Rep II 

MeHg 

- Atrazine 
+ Atrazine 

26b/13= 

29/12 
23/8 
26/12 

28/13 
28/13 

32/8 
27/10 

30/11 
32/9 

25/16 
29/9 

MeHg, 

- Atrazine 
+ Atrazine 

26/14 
30/10 

23/13 
35/5 

31/9 
28/11 

34/7 
30/9 

30/11 
26/14 

29/12 
25/9 

MeHg, 

- Atrazine 
+ Atrazine 

27/14 
34/8 

32/8 
31/7 

31/8 
26/15 

26/12 
32/9 

32/9 
32/9 

30/10 
25/12 

All groups were fed diet A without any toxicants during the pre
exposure phase for 20-26 days after which they were fed the experimental 
diets (without atrazine) until the exposure phase, and were assigned to 
the different treatments as indicated in this table during exposure 
phase only. 

b 
Average number of correct responses. 

c 
Average number of incorrect responses. 
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Table 34 . Factorial analysis of variance for the effects of methylmercury hydroxide, dietary 

methionine, atrazine, and training session on the coded behavioral variables 

P value 

Correct response Incorrect response Default 

Treatments df I® 11^ I II I II 

MeHg 2 0.24 0.13 0.26 0.59 0.35 0.17 

Met 2 0.66 1.33 2.18 1.91 1.34 1.07 

Atr 1 1.28 0.91 0.51 0.89 0.04 1.47 

MeHg x Met 4 1.50 0.39 0,02 0.65 0.74 0.71 

MeHg X Atr 2 1.64 0.94 0.10 1.86 0.49 2.02 

Met X Atr 2 1.18 0.56 4.97^ 1.20 0.77 1.24 

MeHg X Met x Atr 4 0.46 0.71 0.51 0.55 0.67 0.57 

Training session (T) 13 3.38° 3.48° 4.49° 2.04° 1.76^ 2.65° 

T X MeHg 26 1.10 1.51 0.76 1.66 1.26 1.92° 

T X Met 26 1.04 1.02 1.11 0.96 0.98 1.07 

T X Atr 13 2.33° 0.80 0.67 0.91 1.37 0.91 

T X MeHg X Met 52 0.89 1.12 0.83 1.14 0.82 0.91 

T X MeHg x Atr 26 0.96 1.37® 1.06 1.51^ 1.20 0.98 

T X Met X Atr 26 0.77 0.95 0.87 0.65 1.80 0.80 

T X MeHg X Met x Atr 52 0.69 1.09 0.76 0.98 0.78 1.10 
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^Replicate 

^Replicate 

< 0.01. 

< 0.05. 

®P < 0.10. 

I, n=3.89. 

I I ,  n=3 .78 .  

to  
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Table 35. Factorial analysis of variance for the effect of methylmercury hydroxide, dietary 
methionine atrazine and testing sessions on the coded variables 

F value 

T.T. cor . res. T.T. inc. res. A.T. cor. res. A.T. inc. res. 

Treatment df 1* lib I II I II I II 

MeHg 2 0.27 0.74 0.19 0.17 1.24 1.42 0.67 0.93 

Met 2 0.45 2.31 1.08 1.13 0.13 1.08 1.32 1.11 

Atr 1 0.82 0.35 1.17 0.17 0.19 1.05 1.39 0.99 

Mellg X Met 4 1.66 0.27 0.15 0.55 1.20 0.35 1.06 0.40 

Mellg X Atr 2 0.66 0.34 0.13 1.64 0.25 1.19 0.46 0.92 

Met X Atr 2 4.16^ 1.02 1.68 1.52 1.89 0.45 3.27^ 0.57 

MeHg X Met x Atr 4 0.24 0.39 0.27 1.18 0.38 1.66 0.24 0.99 

Testing Session (T) 13 2.33° 0.74 5.81° 5.00° 1.28 10.12° 1.42 9.30° 

T X MeHg 26 0.87 1.41® 0.62 1.20 1.02 1.00 1.74 0.52 

T X Met 26 0.84 1.03 1.28 1.04 1.63 0.79 1.13 0.64 

T X Atr 13 1.71® 0.73 1.00 0.76 1.48 0.60 1.28 0.38 

T X MeHg x Met 52 0.79 1.32® 0.91 1.20 0.55 0.74 0.95 0.80 

T X MeHg X Atr 26 0.91 1.30 1.01 1.33 0.92 1.25 0.79 0.95 

T X Met X Atr 26 0.96 0.91 1.19 1.00 1.52^ 1.53^ 1.01 1.45® 

T X MeHg X Met x Atr 52 0.58 1.05 0.95 0.88 0.97 0.90 1.27® 0.74 
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^Replicate 

^Replicate 

< 0.01. 

*^P < 0.05. 

®P < 0.10. 

T, n=3.89. 

II, n=3.78. 

t 
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Except for the interaction of session and dietary methionine, the 

rest of the session interactions with other factors had significant effects 

on one or two of the variables in one of the replicates with the proba

bility level of P<0.01 to P<0-10 (see Tables 34 and 35). Only the ATCR 

variable in both replicates showed a significant effect of session, 

dietary methionine and atrazine interactions (Table 35). 

Since most of the session effects on variables were highly significant, 

the average values of Vcuriables of each session from different treatments 

were plotted in Figures 7 to 10. Figure 7 shows that, by increasing 

the number of sessions the average number of CR of rats in both replicates 

to the two-choice form stimuli significantly increased and that of the 

IR decreased-

The average number of defaults of rats in all treatments decreased 

until the 9th session. From the 9th to the 15#1 session defaults plateau, 

after which they increase slightly (Figure 8). 

The mean TTCR and TTIR of rats to the two-choice form stimuli are 

shown in Figure 9. The TTCR significantly increased and the TTIR 

decreased as the number of sessions increased. Only in replicate II did 

the mean of ATCR and ATIR show significant decrease as the number of 

sessions increased (Figure 10). 

The means of each variable across 14 sessions are shown in Tables 

36 to 41. LSD for the mean CR of rats in 14 sessions revealed that in 

replicate I, rats fed diet A and atrazine, had a significant increase 

of CR as compared with rats given only diet A (Table 36). In replicate 

II, there was also a significantly lower CR in rats fed diet C, plus 

atrazine, and treated with MeHg^ as compared with rats fed diet C 
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Figure 7. Change of average number of correct and incorrect responses of rats 
across all treatments in replicates I and II 
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Figure 8. Change of average number of defaults of rats across all treatments in replicates 
I and II 
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Figure 9. The change of mean of total time for correct and incorrect responses of rats 
across all treatments in replicate I and II 
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and atrazine (Table 36). 

Table 37 shows that in replicate I feeding rats atrazine and diet 

A caused a significant decrease of IR for all doses of MeHg, and feeding 

groups of rats diet A without atrazine, resulted in a significantly 

higher IR in comparison with the groups fed diets B or c without 

atrazine but treated with MeHg. In replicate II, feeding atrazine to the 

rats resulted in a significant increase of IR in groups fed diet B and 

treated with either MeHg^ or MeHg^- There was also a significantly 

higher IR in comparison with groups fed alike but treated with MeHg^ or 

MeHg^. In replicate II, there was also a significant increase in IR 

by rats given diet A without atrazine and treated with MeHg^ as compared 

with rats given only diet A (Table 37). 

Comparisons of the mean number of defaults in replicate I indicated 

that there were no significant differences among the means as a result of 

treatments (Table 38). However, replicate II showed that the number of 

defaults was significantly decreased by administration of atrazine in 

the diet of the group which received diet B or C with no MeHg treatment. 

The mean number of defaults in replicate II was decreased significantly 

by the higher dose of MeHg in the group of rats fed diet B without 

atrazine, but it increased with increasing dose of MeHg in the groups 

receiving diet C and atrazine (Table 38). 

Table 39 shows that in replicate I rats fed atrazine had a significant 

increase in mean TTCR when given diet A and MeHg^ or MeHg^. In replicate 

II, there was a significant increase of mean TTCR in rats fed diet B and 

treated with MeHg^ in comparison to rats receiving diet B only. 
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Figure 10. The change in the mean of the average total time for correct and incorrect 
responses of rats in replicates I and II across all treatments 
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Table 36. The effect of dietary methionine, methylmercury hydroxide 
and atrazine on the mean number of correct responses of rats 
in the 14 testing sessions of each replicate (replicate I: l 
;LSD=1.62, n=3.89; replicate II: LSD=1.42, Ii=3.78) 

Toxicant 
Diet A 

Rep I Rep II 
Diet B 

Rep I Rep II 
Diet C 

Rep I Rep II 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

20.73 21.67 

22.78 21.85 

21.39 22.30 

22.21 22.51 

20.46 21.33 

21.05 22.51 

20.50 19.33 

21.00 22.89 

20.83 22.33 

20.23 22.02 

21.14 21.64 

22.03 22.12 

21.19 20.98 

20.67 21.98 

22.30 20.67 

21.55 20.80 

20.76 21.58 

21.46 19.89 

^MeHgj.=0.0 mg, MeHg2=0.5 mg, MeHg2=1.5 mg/kg body weight, -Atrazine= 
0.0 mg, TAtra2ine=500 mg/kg dier. 
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Table 37. The effect of dietary methionine, methylmercury hydroxide 
and atrazine on the mean number of incorrect responses of 

rats in the 14 testing sessions of each replicate (replicate I: 
LSD=1.43, n=3.89; replicate II: LSD=1.35, n=3.78) 

Toxicant 
Diet A 

Rep I Rep II 
Diet B 

Rep I Rep II 
Diet C 

Rep I Rep II 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

19.39 17.85 

17.98 18.82 

19.87 18.57 

17.73 17.92 

19.51 19.07 

17.41 19.01 

17.69 15.48 

18.78 18.35 

18.60 16.62 

18.26 18.62 

17.51 18.64 

18.82 17.80 

17.60 18.57 

17.46 19.19 

17.45 18.50 

18.46 17.78 

17.37 18.58 

17.85 18.01 

^MeHg^=0.0 mg, MeHg2=0.5 mg, MeHg^sl.S mg/kg body weight, -Atrazine= 

0.0 mg, +Atfazine=500 mg/kg diet. 



www.manaraa.com

103 

Table 38. The effect of dietary_methioni,ne, methylmercury hydroxide 
and atrazine on the mean number of defaults of rats in the 
14 testing sessions of each replicate (replicate I: LSD=2.14, 
n = 3.89; replicate II: LSD=1.93, n=3.78) 

Toxicant 
Diet A 

Rep I Rep II 
Diet B 

Rep I Rep II 
Diet C 

Rep I Rep II 

MeHg^ 

-Atrazine 1.84 2.44 3.78 7.14 3.11 2.44 

+Atrazine 1.23 1.32 2.21 0.75 3.86 0.80 

MeHg^ 

-Atrazine 0.73 1.12 2.55 3.04 2.24 2.80 

+Atrazine 2-07 1.55 3.56 1.31 1.98 3.30 

MeHg^ 

-Atrazine 1.87 1.57 3.21 1.69 3.86 1.78 

+Atrazine 3.52 0.42 1.11 2.07 2.64 4.07 

^eHg.=0.0 rag, MeHg2=0.5 mg, MeHg^=1.5 mg/kg body weight, -Atrazine= 

0.0 mg, +Atrazine=500 mg/kg diet. 
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Table 39. The effect of dietary methionine, methylmercury hydroxide 
and atrazine on mean,.total time (x 1/10 sec.) for correct 
response of rats in the 14 sessions of each replicate 

(replicate I: LSD=110.7, n=3.89; replicate II; LSD=103.4, n=3.78) 

Toxicant 
Diet A 

Rep I Rep II 
Diet B 

Rep I Rep II 
Diet C 

Rep I Rep II 

MeHg^ 

-Atrazine 1371 1450 

+Atrazine 1494 1527 

MeHg^ 

-Atrazine 1362 1507 

+Atrazine 1478 1494 

MeHg^ 

-Atrazine 1364 1420 

+Atrazine 1467 1469 

1411 1349 

1403 1505 

1402 1512 

1336 1531 

1424 1434 

1435 1492 

1431 1423 

1417 1385 

1534 1399 

1435 1425 

1361 1430 

1381 1300 

^MeHg2=0.0 mg, MeHg2=0.5 mg, MeHg2=1.5 mg/kg body weight, -Atrazine= 
0.0 mg, +Atrazine=500 mg/kg diet. 
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TaJole 40. 

Toxicant 

The effect of dietary methionine, methylmercury hydroxide 
and atrazine on the mean average time (x 1/10 sec.) for 

correct response of rats in the 14 testing sessions of each 
replicate (replicate I: LSD=3.73, n=3l89; replicate II: 
LSD=3.40, n=3.78) 

Diet A 
Rep I Rep II 

Diet B 
Rep I Rep II 

Diet C 
Rep I Rep II 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

MeHg^ 

-Atrazine 

+Atrazine 

66.45 66.53 

65.78 69.83 

63.72 67.66 

67.05 66.84 

65.51 66.92 

69.07 65.19 

69.12 71.99 

67.10 65.83 

66.33 68.34 

64.25 69.42 

66.76 66.85 

65.50 67.67 

68.61 68.63 

68.05 63.19 

68.78 66.74 

65.99 70.24 

65.28 67.02 

64.24 62.15 

MeHg,=0.0 mg, MeHg,=0.5 ing, MeHg^=1.5 mg/kg body weight, -Atrazine= 

0.0 mg, +Atrazine=500 mg/kg diet. 
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Because the split plot factorial analysis of variance indicated no 

significant effect of treatments on TTIR (Table 35), mean comparisons 

on TTIR were not conducted. 

In replicate I, rats fed diet C and treated with MeHg^ had a 

significant increase of mean ATCR in comparison with those fed diet A 

and treated with MeHg^ (Table 40). In replicate I, rats treated with diet 

C, atrazine and MeHg^ also showed a significant decrease in mean ATCR in 

canparison with rats fed diet A, atrazine and treated with MeHg^. The 

mean ATCR in replicate II, was significantly higher for rats receiving 

diet B without atrazine and MeHg in comparison with those fed diets A 

or C (Table 40). In replicate II, rats fed diet A and atrazine showed 

a significantly higher ATCR compared with groups treated alike and given 

either diet B or C. In replicate II, also, groups given diet C, atrazine 

and MeHg^ showed a significantly higher meem ATCR in comparison with rats 

fed diet A, atrazine and treated with MeHg^ (see Table 40). 

Rats receiving diet B, atrazine and MeHg^ in replicate II showed a 

significantly higher mean ATCR in comparison to those treated with diet 

C, atrazine and MeHg^ (see Table 40). Atrazine caused an increase of 

ATCR in rats treated with diets B or C and resulted in a decrease 

of ATCR in those fed diet A (see Table 40). Atrazine in replicate II 

also resulted in a decrease of ATCR in the group fed diet C and treated 

with MeHg2* 

In replicate I, there was a significant decrease of mean ATIR 

due to atrazine in rats which were fed diet B with no MeHg treatment (Table 

41). The MeHg^ treatment in replicate I resulted in a decrease of mean 

ATIR in the rats fed diet C (Table 41). Rats fed diet C without atrazine 
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Table 41: The effects of dietary methionine, methylmercury hydroxide 
and atrazine on the mean average time (x 1/10 sec.) for the 
incorrect responses of rats in the 14 testing sessions of 
each replicate (replicate I: LSD=3.60, n=3.89; replicate II: 

LSD=3.05, n=3.78) 

Diet A Diet B Diet C 
Toxicant^ Rep I Rep II Rep I Rep II Rep I Rep II 

MeHg^ 

-Atrazine 66.77 66.15 69.58 71.67 69.20 67.69 

+Atrazine 66.80 69.00 65.92 65.41 67.41 63.07 

MeHg^ 

-Atrazine 64.07 65.95 65.86 66.95 69.72 65.77 

+Atrazine 67.52 65.86 64.26 67.38 67.78 67.93 

MeHg^ 

-Atrazine 66.05 64.84 68.04 67.34 68.25 66.13 

+Atrazine 68.14 63.63 66.46 66.62 65.22 63.99 

®MeHg^=0.0 mg, MeHg =0.5 mg, MeHg2=1.5 mg/kg body weight, -Atrazine= 

0.0 mg, +Atrazine=500 mg/kg diet. 
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but treated with MeHg^ showed a significantly higher mean ATIR in 

comparison with those treated with diet A or C, MeHg^ and no atrazine 

(Table 41). In replicate II, atrazine caused a decrease of mean ATIR 

in rats receiving diet B or C (Table 41). In the same replicate, rats 

fed only diet B showed a significantly higher mean ATIR compared to 

those fed only diet A or C (see Table 41). In replicate II, the groups 

treated with diet A, atrazine and no MeHg showed significantly higher 

mean ATIR than those treated with diet B or C and atrazine. A higher 

mean ATIR was observed for rats given diet B, atrazine, and MeHg^ compared 

to groups fed diet A, atrazine, and MeHg^ (see Table 41). 
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DISCUSSION 

Since methionine (Met) is one of the essential sulfur amino acids 

which has an important role in protein, S-adenosylmethionone, cystathionine, 

cysteine, and glutathione synthesis, its dietary supolementation might 

play an important role in the metabolism of nutrients and toxicants. It 

has been shown that addition of small amounts of DL-Met into a casein-

based diet improves growth rate, while further addition results in inhib

ition of protein utilization in rats (Harper et al., 1970). Thus, 

dietary Met has a narrow margin of safety and it is known to be one of 

the most toxic amino acids. 

In our experiment, the results of weight gains of rats in response 

to different diets and toxicants indicates a role of detoxification 

capability for excess dietary Met on MeHg and atrazine toxicity. Low 

weight gain due to the consumption of Met deficient diet (diet B) occurred 

as expected. This is in agreement with the finding of Edes et al. (1979), 

who reported no weight gain in the rats fed a diet free of Met and cysteine. 

However, in this experiment the excess Met at the level of 24% above 

the requirement (diet C) did not cause toxicosis or beneficial weight 

gain increases in comparison to adequate Met diet (diet A) . Both the 

MeHg and atrazine caused lower weight gains. Similar results following 

the repeated administration of MeHg have been reported by Mivakawa and 

Deshimaru (1969). For MeHg toxicosis, the excess Met in the diet 

showed some protective effect. Improved weight gains in rats fed 

excessive Met in the diet and treated with atrazine or MeHg^ alone or 

atrazine and MeHg^, are to some degree supportive of the protective 

effect of excess Met against atrazine as well as against MeHg. When 
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atraizine and MeHg^ were administered to the rats the excess Met diet 

did not protect animals from the weight loss of rats fed the Met 

deficient diet with atrazine and MeHg. The high Met rats lost more weight 

than those fed the Met adequate diet and both toxicants 

Glutathione conjugation is probably one of the important mechanisms 

of detoxification of both MeHg and atrazine in the rat. The glutathione 

conjugation process does not require the initial formation of high 

energy intermediate involving ATP; the synthesis of glutathione (GSH) 

from its component amino acids and N-acetylation of cysteine conjugate 

does utilize ATP (Chasseaud, 1976). In this experiment, in the course 

of repeated e:gosure of rats to the toxicants, conversion of Met to 

cysteine through the cystathionine pathway and biosynthesis of GSH are 

possibly stimulated. Thus, disruption of normal Met and cysteine 

metabolism and increased utilization of energy and the sulfur amino acids 

for glutathione synthesis and excretion of toxicants are possible 

explanations for the limited protective effect of excess Met in the diet 

and the loss of body weight in rats due to toxicants and/or the Met 

deficient diet. 

The liver and kidney are the major sites of detoxification for most 

xenobiotics. Atrazine in rats has been shown to be conjugated with GSH 

and excreted through urine or bile (Dauterman and Mueeke, 1974; Climie 

and Hutson, 1979) . Etie conjugation of MeHg with GSH and cysteine also 

occurs in liver and the conjugate is excreted either through bile or 

urine (Norseth and Clarkson, 1971). The liver and kidney also accumulate 

mercury to a great extent by conjugation to metallothionein, membranes 
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or other available -SH groups fPiotrowski. et al., 1974; Winge et al., 

1975). Thus, increases in the activity and induction of enzymes or metal-

lothionein or proliferation of membranes or cells in response to atrazine 

and MeHg toxicity might result in weight change of these organs. A 

change in proportional liver weight due to feeding a Met deficient diet 

alone was not observed in this experiment. Similar results were obtained 

by Edes et al. (1979) . The increase of liver weight due to MeHg toxicity 

has been demonstrated previously by Chang and Desnoyers (1978). Considering 

the liver weight increases as a response of rats to both toxicants, 

alone or in combination, the groups fed Met deficient or adequate diets 

showed significant increases in liver weight, whereas the groups fed Met 

excess diet did not show such a significant increase. Again such 

results support the protective effect of excess dietary Met agëiinst liver 

damage by MeHg and atrazine. 

Orme stead et al. (1980) stated that drugs conjugated with GSH in 

the liver are further metabolized to the corresponding cysteine derivatives 

in the kidney. In this experiment, the response of the kidney to detoxi

fication of atrazine and MeHg was manifested by an increase in kidney 

weight. The drastic increase of kidney weight due to the high level of 

mercury (MeHg^) may be partly due to the induction of metallothionein 

after the biotransformation of MeHg to inorganic mercury. The increase 

of inorganic mercury and induction of metallothionein in kidney after 

MeHg exposure to rats has been shown previously in the rat (Chmielnicka 

and Brzeznicka, 1978). In the kidney, the protective effect cf excess 

Met was not as clear as in the liver. This might be due to the fact 

that the kidney was more responsible for the detoxification of both 
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toxicants, compared to the liver. Only the Met excess diet caused a 

significant small increase in kidney weight in rats treated with MeHg^ 

when compared to the other two levels of Met in the diet. Dietary Met 

alone had no effect on kidney weight. 

The accumulation and concentration of mercury in the organs and 

tissues depends on the type of mercury compound, dose, duration of 

exposure, age, health of the rat and the time of sampling after the last 

administration of mercury. Injection of a single dose of MeHg in mice 

and rats has been shown to result in an accumulation of mercury in kidney, 

blood, and liver in that order (Ulfvarson, 1959a; 1969b). In addition, 

the administration of a total dose of 40 mg MeHg per kg of body weight 

in three days to rats resulted in an accumulation of mercury after 19 

days in blood, kidney, liver and brain. Since longer exposure (five weeks) 

of MeHg were used in our experiment, and mercury concentrations were 

measured in the samples prepared a day after the last exposure, the 

order of mercury concentration in the tissues is in agreement with 

those of Ulfvarson (1959b). The blood had the highest and the brain 

had the lowest concentration of mercury. 

In rats, a major portion of the circulating blood MeHg is bound 

in erythrocytes, mainly to hemoglobin (Chen et al., 1975). In humans 

and rabbits, however, it is mainly bound to glutathione rather than 

to hemoglobin (Naganumra and Imura, 1979). Therefore, the change of 

blood GHS in the rat should not affect the blood mercury concentration 

extensively. Also, we did not find any correlation between blood 

mercury concentration and blood GSH in this experiment. 
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Nevertheless, the data on organ and tissue concentrations of 

mercury are rather difficult to interpret. Obviously, the concentration 

of mercury in the organs is highly influenced by the dose of MeHg; an 

increase of mercury concentration in the organs resulted from administra

tion of high dose of MeHg. Also, administration of atrazine caused more 

accumulation of mercury in the liver of rats treated with MeHg^, but it 

is not possible to draw any conclusion regarding the influence of dietary 

Met on mercury deposition in the organs. 

From the works of Ulfvarson {1969b) and Cember and Donagi (1964) 

on the distribution and elimination of organic mercury compounds by rats, 

calculations can be made based on the two following criteria which will 

help to evaluate the effect of dietary Met on MeHg deposition in the 

organs. 

1. The concentration of mercury in the kidney at all dose levels 

is a constant fraction of mercury retained in the body (Cember 

and Donagi, 1954). Therefore, concentrations of mercury in 

blood, liver and brain relative to kidney mercury, indicate 

the degree of toxicity or accumulation of mercury in the organ. 

This is calculated as: Ratio A = (Hg conc. tissue) 4- (Hg conc. 

kidney). 

2. The ratio of relative concentrations of mercury in the organs 

should be similar among the groups treated alike. This was 

calculated as: Ratio B = (Ratio A for MeHg^ treated animals) ? 

(Ratio A for MeHg^ treated animals). Therefore, any differences 

seen in the present study would be either due to dietary 



www.manaraa.com

114 

methionine or atrazine treatments. 

The relative concentrations of Hg in the blood, liver, and brain to 

that of the kidney (Ratio A) are shown in Tables 42 and 43- Dividing 

data from Table 42 by data in Table 43 gives the ratios in Table 44 (Ratio 

B) . 

Relatively more mercury was accumulated in the blood and brain than 

in the liver with either dose of mercury (Tables 42 and 43). The effect 

of dietary Met is shown clearly in Table 44. Feeding the Met deficient 

diet resulted in a distinctly greater accumulation of mercury in the 

organs: The Met deficient diet tended to accentuate the accumulation of 

mercury in the brains of rats fed either MeHg^ or MeHg^ levels. The 

protective effects of excess Met in the diet were not distinguishable 

from the effect of the adequate diet with regard to the accumulation of 

mercury in the organs. There was no consistent effect of atrazine on these 

values. The effects shown in Table 44 are illustrated in Figure 11. 

Although brain accumulated a higher amount of mercury in the group 

fed the Met deficient diet, the onset of clinical manifestations of MeHg 

neurotoxicity in this group was not different from those of the rats fed 

the adequate or excess Met diet. This might be due to the fact that in the 

rat the first observable damage occurs in the peripheral nervous system 

and in cerebellum rather than in sensory cerebral cortex (Evans et al., 

1975). In this experiment, despite the effect of atrazine on liver 

mercury concentration, it did not affect the brain mercury concentration. 

Clinically, however, the onset of MeHg neurotoxicity signs started 

earlier in the groups fed atrazine in the diet. This discrepancy might 

also be explained in the same way as the effect of mercury on peripheral 
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Table 42. Relative mercury concentration of blood, liver, and brain 
to kidney in the rats treated with low mercury dose (MeHg, 
0.5 mg/kg) ^ 

Diet A Diet B Diet C 

-Atr. +Atr. -Atr. +Atr. -Atr. +Atr. 

Hg blood/ 
Hg kidney 1.94 1.90 1.09 1.53 1.42 1.35 

Hg liver/ 
Hg kidney 0.24 0.29 0.22 0.24 0-19 0.23 

Hg brain/ 
Hg kidney 0.07 0.09 0.09 0.6 0.07 0.09 

Table 43. Relative mercury concentration of blood, liver, and brain 
to kidney in rats treated with high mercury dose (MeHg2= 
1.5 mg/kg) 

Diet A Diet B Diet C 

-Atr. 4-Atr. -Atr. +Atr. -Atr. +Atr. 

Hg blood/ 
Hg kidney 2.94 2.86 3.67 4.92 3.14 3.01 

Hg liver/ 
Hg kidney 0.46 0.70 0.65 0.72 0.46 0.76 

Hg brain/ 
Hg kidney 0.24 0.29 0.30 0.30 0.23 0.26 
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Table 44. Ratio of the relative mercury concentration of tissues to 
kidney at the high mercury (MeHg^) treatment to the low 
mercury (MeHg2) treatment 

Diet A Diet B Diet C 
-Atr. +Atr. -Atr. +Atr. -Atr. +Atr. 

Hg blood/ 
Hg kidney 1.51 1.50 3.37 3.21 2.21 2.23 

Hg liver/ 
Hg kidney 1.92 2.41 2.95 3.00 2.42 3.30 

Hg liver/ 
Hg kidney 3.31 3.24 5.24 4.60 3.02 2.91 

nervous system rather than on the cerebral cortex. 

The excretion of mercury in urine increased as the cumulative 

dose of MeHg (total dose of ej^osure at the time of urine collection) 

increased. The results of this study showed that toxicity of atrazine 

in rats had no effect on urine excretion of mercury after stimultaneous 

treatment of rats with atrazine and MeHg for a week. However, atrazine 

significantly affected mercury excretion in urine collected during period 

II (after 3 weeks of treatments). No effect of atrazine on urine mercury 

excretion was seen during period III. This might be due to the cumulative 

toxicity of MeHg which overcame the effect of atrazine toxicity and, 

consequently an atrazine effect was not detected during period III. 

Mercury content of urine samples might also be subjected to the errors 

of the urine collection method. Technically the collection of urine by the 

method of Black and Claxton (1979), in aluminum foil may be only applicable 
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Figure 11. The effects of dietary met on the ratio of relative 
mercury concentration of tissues to kidney at MeHg^ treat
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symbols are related to groups with and without atrazine 
treatments respectively) 
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to a short time urine collection and may not be suitable for the long 

period (12-14 hours) collection as was done in this experiment- Although, 

as suggested in the method, many wrinkles were made in the aluminum 

foil, and food was not provided uring urine collection, the evaporation 

of urine and contamination with feces and food particles carried on the 

fur of the rat remain major problems associated with this method. Since 

mercury is also excreted through the feces, the contamination of urine 

with feces in the collecting cages might contribute to the urine mercury 

concentration. Use of metabolic cages, if available, would be desirable 

for large numbers of animals and long term urine collection. 

The interaction between selenium and mercury has been shown in rats 

and other animals. The possible interaction between Se and Hg through the 

effect of selenium on the activity of the selenoenzyme, GSH-Px, was of 

particular interest in this experiment. The biochemical function of GSH-

Px in reduction of hydrogen peroxide as well as organic hydroperoxides 

is of critical importance in the erythrocyte (Sunde and Hoekstra, 1980). 

This enzyme may be required in the metabolism of arachidonate and in 

prostaglandin synthesis (Anonymous, 1981). In this study, administration 

of MeHg caused a significant reduction in the activity of whole blood 

GSH-Px of rats. This reduction of activity was related directly to the 

dose of MeHg administered. The enzyme activity reduction by MeHg might be 

related to the complex formation of MeHg with the biologically active SE 

of GSH-Px as has been speculated by Hoekstra (1975) and Ganther (1975). 

In the present study, the activity of whole blood GSH-Px in the rat 

declined as the concentration of mercury in the blood increased as a 

result of high MeHg treatment. Such Hg and GSH-Px relationship existed 



www.manaraa.com

119 

in the blood of rats fed either of the dietary Met levels. Although 

statistical analysis did not show any significant influence of dietary Met 

on the whole blood GSH-Px; however, considering Table 44, one can infer 

some effect of low Met diet (B) on the increase of blood mercury 

concentration, and consequently its effect on the depression of whole 

blood GSH-Px activity. 

It is rather difficult to draw a clear conclusion on the overall 

effect of treatments on liver GSH-Px activity. Despite the increase in 

mercury concentration of liver by the higher dose of MeHg, the specific 

activity of Se-dependent GSH-Px remained unchanged. The inhibitory 

effect of MeHg observed with blood GSH-Px was not seen with liver GSH-Px. 

To calculate the specific activity of GSH-Px of liver, the total liver 

protein was measured. The inhibitory effect of mercury on protein 

synthesis in liver might have caused the above mentioned unexpected results. 

The activity of the enzyme was also decreased by the Met deficient diet. 

However, this kind of effect was not significant for all groups receiving 

Met deficient diets. 

The specific activity of GSH-Rd in liver did not change significantly 

in any of the treatments. This confirms the finding of Pekkanen and 

Sandholm (1972) that showed liver GSH-Rd activity was not affected by MeHg. 

Use of 1,2-dichloro-4-nitrobenzene conjugation with GSH is a valid 

model to evaluate liver ccsapetence for the initial step in the mercapturic 

acid synthesis for atrazine detoxification. Therefore, the cytosolic 

glutathione-S-transferase of liver was investigated. It was found that 

long term exposure of atrazine causes reduction of specific activity of 

this enzyme in rat liver. It seems that increasing MeHg dose causes 
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a decrease of specific activity of GSH—S-trans in rats fed Met deficient 

diets, but an increase of specific activity was causée?, in the rats fed 

Met imbalanced diets (Met deficient or Met excess). The overall 

picture does not indicate that feeding rats Met excess diet will result 

in a greater liver competence with respect to conjugation of atrazine 

with GSH, by GSH-S-trans. The biochemical inhibitory effects of atrazine 

and MeHg on specific activity of liver GSH-S-trans need further investi

gation . 

Prostaglandins (PCs) are fundamental response metabolites of cells 

or organisms. Synthesis of PCs depends on regulation of essential fatty 

acid metabolism, lipase activity, cofactors, hormones and other factors. 

Metabolism of glutathione, vitamin E, Met, and GSH-Px activity may 

influence the PGs synthesis (Tai and Yuan, 1977; Nugteren, 1970; Lands 

and Rome, 1976; Horrobin et al., 1978; Morse et al., 1977). In this 

experiment, ex-vivo synthesis of PGE^ and TXB^ by platelets from clotted 

blood were higher in the groups treated with MeHg. There are no previous 

reports of effect of MeHg on synthesis of PGs. Several factors might be 

responsible for the increase of PG synthesis in blood. With the available 

data, the most logical speculation might be the possible reduction of 

activity of GSH-Px of blood by MeHg. Since hydrogen peroxide and organic 

hydroperoxides have stimulatory effects on PG synthesis, the increase of 

PGs in this experiment might have resulted from a build up of some 

endogenous hydroperoxides by the decrease of GSH-Px activity in the blood. 

The effects of hydroperoxy free radicals or peroxy radicals on endoperoxide 

formation and PG synthesis are described by Morse et al. (1977). A 
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decrease in availability of vitamin E might also have contributed to 

increased PG synthesis. Vitamin E as an antioxidant plays an important 

role in membrane stabilization. Vitamin E has also been shown to have 

a protective effect against MeHg toxicity (Welsh, 1974; Siinde, 1976; Chang 

et al., 1977). The inhibitory effect of vitamin E on biosynthesis of PGs 

has been established (Nugteren, 1970; Lands and Rome, 1975). Such an 

inhibitory effect might result from its antioxidant activity. Considering 

the above effects, MeHg toxicity in the rats might have resulted in a 

decline of vitamin E concentration which consequently caused an enhance

ment of biosynthesis of PGs. The level of vitamin E in the diet of rats 

in this experiment was at the minimum requirement for the rat as indicated by 

NRC/NAS (1978). Decrease of PGE^ synthesis in brain by excess Met 

through taurine metabolism has been suggested (Horrobin et al., 1978). 

In this experiment, although dietary Met showed an influence on both PGE^ 

and TXB^ ex-vivo synthesis in clotted blood, the effects were not clear 

enough to be in agreement with the suggestions of Horrobin et al. (1978). 

Administration of xenobiotics subject to GSH conjugation may lead 

to extensive depletion of cellular GSH (Wood, 1970; Chasseaud, 1973; 

Gillette, 1977). It has been shown that deposition of MeHg in liver was 

not affected when liver GSH was depressed to 15% of control after 30 min. 

of administration of diethylmaleate in rat (Richardson and Murphy, 1975). 

But depletion of blood and kidney GSH were correlated to lower depositions 

of mercury in the same experiment. Congiu et al. (1979) found that 

administration of MeHg chloride to rats resulted in an increase of liver 

GSH and a decrease of kidney GSH, without any increase in mercury concen

tration in liver. The results of our experiment are somewhat different 
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from those- Although it has been shown that atrazine is conjugated with 

GSH by the enzyme GSH-S-trans (Dauterman and Muecke, 1974; Climie 

Hutson, 1978), feeding rats with atrazine in the amount of 500 mg/kg of 

diet ad libitum for five weeks, did not cause any change in liver GSH 

levels. However, atrazine caused an increase in the mercury deposition 

with high level of MeHg administration. Atrazine also caused a significant 

increase of GSH in blood, but blood mercury concentration was not signifi

cantly affected. MeHg deposition in kidney and brain also did not change 

significantly with atrazine treatment. Administration of MeHg alone 

produced a slight numerical increase of GSH of liver by increasing the 

dose from MeHg^ to MeHg^, but it did not reach statistical significance. 

However, liver and kidney mercury deposition were greatly increased. 

These results also are not in agreement with Congui et al. (1979). 

Since GSH measurements of the organs in most experiments were 

conducted within short periods of time after exposure to GSH depleting 

agents (Griffith and Meister, 1979; Mitchell et al., 1973; James et al., 

1971; Boyland and Chasseaud, 1979), the development of tolerance by 

repeated exposure, presence of alternative detoxifying pathways and 

interorgan translocation of GSH might be the reason for lack of effect 

of atrazine on liver GSH concentration in this experiment. Development 

of tolerance to sodium maleate which decreases GSH has been demonstrated 

in rats by Richardson anà Murphy (1975). Although Refsvik (1978) inter

preted that a high concentration of liver GSH is requisite for the normal 

translocation of MeHg from liver to bile, the result of the present 

experiment indicates that in long term exposure to MeHg other 

sulfhydryl containing compounds such as cysteine may be involved in 



www.manaraa.com

123 

translocation because liver mercury concentration increased with 

increasing MeHg dose in this experiment. 

Dietary Met with or without administration of both toxicants had 

no effect on liver glutathione status, but Met deficient diet alone 

caused a decrease of GSH and increase of GSSG and TGSH in blood. Met 

deficient diet together with atrazine also caused increases of blood GSH, 

GSSG and TGSH. However, when both toxicants were administered, the effect 

of dietary Met on blood glutathione was not clear. 

The mercapturic acids in urine were estimated by measuring conjugated 

sulfhydryl groups after alkaline hydrolysis. Conjugated cysteine or 

any other conjugated -SH groups were not excluded by this measurement. 

Therefore, the measurement was a crude estimation of mercapturic acid 

derivatives in the urine. Thus, the effect of diet and toxicants on 

mercapturic acids excretion must be evaluated conservatively. In this 

study, the most predominant influence on urine mercapturic acids 

excretion was through atrazine treatment, which caused an increase in 

excretion. This finding is in accord with the view that atrazine is a 

percursor of mercapturic acids in the rat (Climie and Hutson, 1978). 

However, the increase of mercapturic acids excretion in urine was not 

accompanied by liver or blood glutathione decreases, as stated before. 

The effect of atrazine on increasing mercapturic acids excretion 

was also accompanied by increased excretion of mercury in the urine. 

During period II, the administration of low dose of mercury (MeHg^) with 

or without atrazine in the diet generally resulted in higher excretion of 

mercapturic acid in urine in comparison with MeHg^ (no mercury) and 
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MeHg^ (high mercury) treatments. During period III, the effects of low 

and high doses of MeHg with or without atrazine are not distinguishable 

from each other. The excretion of mercapturic acids in urine is accom

panied by increase of mercury excretion until period II, but during 

period III, the mercapturic acids excretion declined while mercury 

excretion increased and became independent from mercapturic acids 

excretion. This is possibly due to the fact that between the third and 

fifth week of administration of toxicants, the kidney had developed a 

dysfunction. The increase in kidney weight might also be 

such dysfunction. Therefore, mercury leakage into the urine without prior 

conjugation may have occurred. 

The increase of mercapturic acids excretion during period II was 

seen in the urine in all treatments. Such an increase might be related 

partially to the excretion of endogenous -SH conjugated metabolites, 

such as steroids, prostaglandins, and quinones (Chasseaud, 1976; Chaud-

hari et al., 1978). 

Discussion of Behavioral Studies 

Performance of a rat in the exposure phase in response to the two-

choice light stimuli is highly dependent on its previous experience with 

light stimuli in the pre-e:^osure phase. The unsatisfactory responses 

of rats to the two-choice form light stimuli in the exposure phase might 

be due to the fact that the correct responses of rats to the light stimuli 

during the last two sessions in the pre-exposure phase were only 55-81% 

(23-34 correct responses from 42 trials; see Table 33) . 
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Daily treatments of rats with dietary Met and toxicants had no 

meaningful effect on performances of rats as measured by number of, or 

time for, correct and incorrect responses, and number of defaults in 

response to the two-choice form light stimulus. Despite significant 

clinical and biochemical effects of treatments, performances in response 

to the visual stimulus were not significant after 27 daily testing ses

sions. Nevertheless, analysis of variance and mean comparisons revealed 

that, except ATCR variable which was affected in both replicates, the 

other variables were only affected in one of the two replicates (see 

Tables 34 and 35). Thus, combining of data from two replicates of 

behavioral studies might give a fallacious result. 

Although ATCR in both replicates was significantly (P<0.10) 

affected by testing sessions and interaction of Met and atrazine factors, 

the mean comparison revealed that the effects were different in 

the two replicates. Therefore, they were not combinable and in

conclusive. The overall session effects on the performance of all 

groups of rats are shown in Figures 7 to 10. The performance of rats in 

response to the stimulus in general improves significantly with the 

repetition of session. The average time for both CR and IR decreases 

until the 9th session (see Figure 10). This might indicate that all of 

the rats in different groups were learning the two-choice form of light 

stimulus and were responding at a fast rate. However, after the 9th session 

the improvement in learning was gradually diminished. Similar trends are 

observable in Figure 8 for the number of defaults which decreases until 

about the 9th session. 
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Since MeHg accumulated to a great extent in CNS, the effect of two 

doses of MeHg {0.5 and 1.5 mg/kg body weight) was the major consider

ation among the other treatments for the behavioral study. Although the 

occipital lobe of rats brain did accumulate a high concentration of mercury 

(see Table 10), visual pathways probably were not affected in this e^geri-

ment because MeHg in rat mainly effects the cerebellum and peripheral 

nervous system rather than the cerebral cortex (Evans et al., 1975). 

This might be an important explanation for the no-effect findings. Thus, 

more probably the visual pathway of the rats was less affected during the 

course of repeated exposures, or the effect was not detected by the two-

choice form discrimination test. Ataxia, the leg-crossing phenomenon 

and other clinical signs of MeHg toxicity were predominant in high 

exposure (1.5 mg/kg) animals. A replication of this study with path

ological investigation would give greater information about the defects 

in the visual pathway in this study. 

Perhaps it would have been possible to see the effects of diets and 

toxicants by the two-choice form light discrimination test if the number 

of training sessions in the pre-exposure phase had been extended from 

20-26 sessions to 40-50 sessions and the number of testing sessions in 

the exposure phase had been extended from 25-29 to 90-120 sessions. 

However, such extensions were not possible in our experiment. Since 

extension of pre-exposure days would have caused the rats ro be signifi

cantly older, achieving a Met deficient condition would have been less 

likely during the short exposure phase. Increasing the exposure days, 

at least for the rats treated with high level of MeHg, probably would have 

resulted in high mortality (death of rats in these groups started after 



www.manaraa.com

127 

30 days of exposure of high level of MeHg). 

• An alternative explanation for the no effect findings would be that 

the subtle visual effect of MeHg toxicity was masked by a high motivation 

of rats by water deprivation, i.e., water deprivation resulted in a 

high motivation of the rats in both control and treatment groups to 

respond to the light stimulus. Such speculation might be repudiated by 

the evidence that the mean CR increased while the IR decreased in all 

treatments as the session number increased (Figure 7). 

The findings suggest that the two-choice form discrimination is not 

the prime choice of behavioral studies in rats for a short period of time. 

Other behavioral tests such as ambulation, rearing (Lown et al., 1977), 

T-maze learning (Post et al., 1973), swimming ability (Zenick, 1974), and 

active avoidance learning (Hughes et al., 1975) might be more suitable 

for the investigation of MeHg effect on the rat and its interaction with 

nutrients and other toxicants in short term studies. 
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SUMMARY 

The effect of dietary methionine (Met), a percursor of cysteine 

and glutathione, on the toxicity of methylmercury hydroxide (MeHg) and 

atrazine in male Wistar rats was investigated. Eighteen daily treat

ments were arranged from combinations of three levels of dietary Met 

(diet A = 0.42%, diet B = 0.18%, and diet C = 0.56%), three levels of 

MeHg (MeHg^ = 0.0 mg, MeHg^ = 0.5 mg, MeHg^ = 1.5 mg/kg of body weight) 

and two levels of atrazine (-Atrazine = 0.0 mg and +Atrazine = 500 mg/kg 

diet) to which a total of 144 rats in two replicates (72 rats/replicate 

containing 4 rats/treatment) were randomly assigned. 

Rats of each replicate were trained for 20-26 sessions to respond 

to the computer generated light stimulus in the pre-exposure phase of 

the study (25-32 days). A two-choice form light discrimination test 

was conducted for 25-29 sessions to investigate behavioral effects of 

diets and toxicants on rats in the exposure phase (32-35 days). 

_ Atrazine was administered in the diets which were provided to the 

rats ad libitum, and a combined two-day dose of MeHg was administered 

to the rats by gavage every other day. For mercapturic acids and 

mercury analyses, urine of rats was collected three times, in two-week 

intervals between collection, beginning a week after the treatments 

were started. 

At the end of the experiment, rats were anesthetized with ether; 

samples of blood, liver, kidney, and brain were collected for glutha-

thione peroxidase (GSH-Px), glutathione reductase (GSH-Rd), glutathione-
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S-transferase (GSH-S-trans), total glutathione (GSH and GSSG), prosta

glandin (PG) , and r'.ercury assays. 

Excess dietary Met had a protective effect on MeHg and atrazine 

toxicity in rats using weight gain as the index of toxicity. An increased 

weight loss was observed in the rats fed diet B and treated with MeHg 

and atrazine in this experiment. The onset of MeHg toxicity signs 

started earlier in the groups fed atrazine in the diet. Liver weight 

was increased in response to the toxicants in the groups of rats fed diet 

A or B but liver weight was not changed by exposure to toxicant in the 

groups fed diet C. The protective effect of excess Met content of diet 

C caused a significantly lower increase of kidney weight in the rats 

which were treated with MeHg^, in contrast with the two other diets. 

Blood had the highest and liver the lowest concentrations of 

mercury. Kidney accumulated more mercury than did brain in rats which 

were treated with MeHg^. The reverse effect was found when MeHg^ was 

administered. There was no correlation between blood mercury concentration 

and status of blood GSH. Feeding the Met deficient diet (B) resulted 

in a greater accumulation of mercury in blood, liver and brain. This 

effect was most pronounced in brain tissue. Atrazine treatment caused 

a significant increase in mercury excretion in urine after three weeks 

of exposure but its effect at the end of the experiment was not 

significant, suggesting adaptation. 

Activities of whole blood GSH-Px declined as the concentration 

of mercury in blood increased. The deficiency of Met in the diet may 

have caused the decline of GSH-Px through increases in blood mercury 

concentrations. Despite an increase in mercury concentration in liver. 
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liver GSH-Px and GSH-Rd were unchanged. The long-term exposure of rats 

to atrazine in this experiment caused reductions of liver GSH-S-trans 

activity toward 1,2-dichloro-4-nitrobenzene. Increase in MeHg dose 

caused a decrease in GSH-S-trans activity in the groups fed diet B while 

GSH-S-trans activity increased in rats fed Met imbalanced diets (B and C). 

Feeding rats with diet C did not result in a greater liver competence 

for atrazine and MeHg detoxification. 

Treatments with MeHg^ and MeHg^ resulted in increases in 

ex-vivo synthesis of PGE^ and TXB^ by platelets from clotted blood. The 

increase in PGs might have resulted from a buildup of some endogenous 

hydroperoxides because of a decrease of GSH-Px activity, or a decrease in 

the availability of vitamin E. 

Although it has been shown that atrazine can deplete the GSH 

reserves of the body, feeding rats 500 mg of atrazine/kg diet ad libitum 

for 5 weeks did not cause persistent changes in liver total GSH, but 

there was an increase in blood GSH. Administration of MeHg alone caused 

a slight increase of GSH in liver. The development of tolerance after 

repeated exposure and the presence of alternative detoxifying pathways 

and interorgan translocation of GSH might be the reasons for no effect 

of atrazine on liver GSH status. 

Dietary Met caused no effect on liver GSH and an increase in GSSG 

(oxidized glutathione) and total GSH in blood. It also caused an increase 

in GSH, GSSG and total GSH in blood when atrazine was present. Atrazine 

increased urinary mercapturic acids excretion, and the excretion was also 

particularly affected by the low dose of MeHg after three weeks of repeated 

exposure. The increased mercapturic acid excretion may have been related 
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to the endogenous conjugated metabolites such as steroids, prostaglandins, 

and quinones. 

Despite significant clinical and biochemical effects of treatments 

on rats, performance of rats after 27 trials with two-choice form light 

stimulus as measured by number of, or time for correct and incorrect 

responses and number of defaults was not significantly affected by the 

treatments. Although the occipital lobe of rats brains did accumulate a 

high concentration of mercury, an effect of MeHg on the visual pathway of 

rats was not detected by the two-choice form discrimination test after 

27 testing sessions. Instead peripheral nervous system and cerebellum 

were highly affected, as indicated by the presence of ataxia and the 

leg-crossing phenomenon. 
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